Storm A J, Chen J H, Ling X S, Zandbergen H W, Dekker C
Department of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands.
Nat Mater. 2003 Aug;2(8):537-40. doi: 10.1038/nmat941.
Single nanometre-sized pores (nanopores) embedded in an insulating membrane are an exciting new class of nanosensors for rapid electrical detection and characterization of biomolecules. Notable examples include alpha-hemolysin protein nanopores in lipid membranes and solid-state nanopores in Si3N4. Here we report a new technique for fabricating silicon oxide nanopores with single-nanometre precision and direct visual feedback, using state-of-the-art silicon technology and transmission electron microscopy. First, a pore of 20 nm is opened in a silicon membrane by using electron-beam lithography and anisotropic etching. After thermal oxidation, the pore can be reduced to a single-nanometre when it is exposed to a high-energy electron beam. This fluidizes the silicon oxide leading to a shrinking of the small hole due to surface tension. When the electron beam is switched off, the material quenches and retains its shape. This technique dramatically increases the level of control in the fabrication of a wide range of nanodevices.
嵌入绝缘膜中的单纳米尺寸的孔(纳米孔)是一类令人兴奋的新型纳米传感器,可用于对生物分子进行快速电学检测和表征。显著的例子包括脂质膜中的α-溶血素蛋白纳米孔和Si3N4中的固态纳米孔。在此,我们报告一种利用最先进的硅技术和透射电子显微镜,以单纳米精度制造氧化硅纳米孔并提供直接视觉反馈的新技术。首先,通过电子束光刻和各向异性蚀刻在硅膜中打开一个20纳米的孔。热氧化后,当该孔暴露于高能电子束时,可缩小至单纳米尺寸。这会使氧化硅流化,由于表面张力导致小孔收缩。当电子束关闭时,材料骤冷并保持其形状。该技术极大地提高了各种纳米器件制造过程中的控制水平。