Sapp Kayla, Shlomovitz Roie, Maibaum Lutz
Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
Department of Chemistry, University of Washington, Seattle, WA 98195, USA ; Department of Physics, University of Washington, Seattle, WA 98195, USA.
Annu Rep Comput Chem. 2014;10:47-76. doi: 10.1016/B978-0-444-63378-1.00003-3. Epub 2014 Dec 4.
Biological membranes exhibit long-range spatial structure in both chemical composition and geometric shape, which gives rise to remarkable physical phenomena and important biological functions. Continuum models that describe these effects play an important role in our understanding of membrane biophysics at large length scales. We review the mathematical framework used to describe both composition and shape degrees of freedom, and present best practices to implement such models in a computer simulation. We discuss in detail two applications of continuum models of cell membranes: the formation of microemulsion and modulated phases, and the effect of membrane-mediated interactions on the assembly of membrane proteins.
生物膜在化学成分和几何形状上均呈现出长程空间结构,这引发了显著的物理现象和重要的生物学功能。描述这些效应的连续介质模型在我们从大长度尺度理解膜生物物理学方面发挥着重要作用。我们回顾了用于描述成分和形状自由度的数学框架,并介绍了在计算机模拟中实现此类模型的最佳实践。我们详细讨论了细胞膜连续介质模型的两个应用:微乳液和调制相的形成,以及膜介导的相互作用对膜蛋白组装的影响。