Ayton Gary S, Voth Gregory A
Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, 315 S. 1400 E. Rm 2020, Salt Lake City, UT 84112-0850, USA.
J Struct Biol. 2007 Mar;157(3):570-8. doi: 10.1016/j.jsb.2006.10.020. Epub 2006 Oct 27.
Multiscale simulation is employed to examine changes in atomistic-level protein structure due to long wavelength membrane undulations and plane stress fields. An ensemble of atomistic-level simulations of a model of a transmembrane influenza A virus M2 proton channel in a dimyristoylphosphatidylcholine (DMPC) bilayer is coupled to a corresponding mesoscopic model of a DMPC bilayer in an explicit mesoscopic solvent. Structural variations in the key proton gating His37 residues of the M2 channel are examined. Small, but distinct variations in the structure of the His37 residues are observed in both the open and closed states of the channel as a result of the coupling to mesoscopic-level membrane motions.
采用多尺度模拟来研究由于长波长膜波动和平面应力场导致的原子水平蛋白质结构变化。在二肉豆蔻酰磷脂酰胆碱(DMPC)双层中,对甲型流感病毒M2质子通道模型进行一系列原子水平模拟,并将其与处于显式介观溶剂中的DMPC双层的相应介观模型耦合。研究了M2通道关键质子门控His37残基的结构变化。由于与介观水平膜运动的耦合,在通道的开放和关闭状态下均观察到His37残基结构存在微小但明显的变化。