Martina Marie-Sophie, Fortin Jean-Paul, Ménager Christine, Clément Olivier, Barratt Gillian, Grabielle-Madelmont Cécile, Gazeau Florence, Cabuil Valérie, Lesieur Sylviane
Laboratoire de Physico-Chimie des Systèmes Polyphasés, UMR CNRS 8612, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
J Am Chem Soc. 2005 Aug 3;127(30):10676-85. doi: 10.1021/ja0516460.
Maghemite (gamma-Fe2O3) nanocrystals stable at neutral pH and in isotonic aqueous media were synthesized and encapsulated within large unilamellar vesicles of egg phosphatidylcholine (EPC) and distearoyl-SN-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000), 5 mol %), formed by film hydration coupled with sequential extrusion. The nonentrapped particles were removed by flash gel exclusion chromatography. The magnetic-fluid-loaded liposomes (MFLs) were homogeneous in size (195 +/- 33 hydrodynamic diameters from quasi-elastic light scattering). Iron loading was varied from 35 up to 167 Fe(III)/lipid mol %. Physical and superparamagnetic characteristics of the iron oxide particles were preserved after liposome encapsulation as shown by cryogenic transmission electron microscopy and magnetization curve recording. In biological media, MFLs were highly stable and avoided ferrofluid flocculation while being nontoxic toward the J774 macrophage cell line. Moreover, steric stabilization ensured by PEG-surface-grafting significantly reduced liposome association with the macrophages. The ratios of the transversal (r2) and longitudinal (r1) magnetic resonance (MR) relaxivities of water protons in MFL dispersions (6 < r2/r1 < 18) ranked them among the best T2 contrast agents, the higher iron loading the better the T2 contrast enhancement. Magnetophoresis demonstrated the possible guidance of MFLs by applying a magnetic field gradient. Mouse MR imaging assessed MFLs efficiency as contrast agents in vivo: MR angiography performed 24 h after intravenous injection of the contrast agent provided the first direct evidence of the stealthiness of PEG-ylated magnetic-fluid-loaded liposomes.
合成了在中性pH值和等渗水性介质中稳定的磁赤铁矿(γ-Fe2O3)纳米晶体,并将其包裹在由薄膜水合和连续挤压形成的大单层卵磷脂(EPC)和二硬脂酰-SN-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000](DSPE-PEG(2000),5 mol%)囊泡中。通过快速凝胶排阻色谱法去除未包封的颗粒。载有磁流体的脂质体(MFL)大小均匀(准弹性光散射测得的流体动力学直径为195±33)。铁负载量从35变化到167 Fe(III)/脂质mol%。低温透射电子显微镜和磁化曲线记录表明,脂质体包封后氧化铁颗粒的物理和超顺磁特性得以保留。在生物介质中,MFL高度稳定,避免了铁磁流体絮凝,同时对J774巨噬细胞系无毒。此外,PEG表面接枝确保的空间稳定显著降低了脂质体与巨噬细胞的结合。MFL分散体中水质子的横向(r2)和纵向(r1)磁共振(MR)弛豫率之比(6 < r2/r1 < 18)使其成为最佳的T2造影剂之一,铁负载量越高,T2造影增强效果越好。磁泳证明了通过施加磁场梯度可能对MFL进行引导。小鼠MR成像评估了MFL作为体内造影剂的效率:静脉注射造影剂24小时后进行的MR血管造影首次直接证明了聚乙二醇化载磁流体脂质体的隐身性。