Suppr超能文献

用于黄斑色素体内检测的简易拉曼仪器。

Simple Raman instrument for in vivo detection of macular pigments.

作者信息

Ermakov Igor V, Ermakova Maia R, Gellermann Werner

机构信息

Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA.

出版信息

Appl Spectrosc. 2005 Jul;59(7):861-7. doi: 10.1366/0003702054411616.

Abstract

Raman spectroscopy holds promise as a novel noninvasive technology for the quantification of the macular pigments (MP) lutein and zeaxanthin. These compounds, which are members of the carotenoid family, are thought to prevent or delay the onset of age-related macular degeneration, the leading cause of irreversible blindness in the elderly. It is highly likely that they achieve this protection through their function as optical filters and/or antioxidants. Using resonant excitation in the visible region, we measure and quantify the Raman signals that originate from the carbon double bond (C=C) stretch vibrations of the pi-conjugated molecule backbone. In this manuscript we describe the construction and performance of a novel compact MP Raman instrument utilizing dielectric angle-tuned band-pass filters for wavelength selection and a single-channel photo-multiplier for the detection of MP Raman responses. MP concentration measurements are fast and accurate, as seen in our experiments with model eyes and living human eyes. The ease and rapidity of Raman MP measurements, the simplicity of the instrumentation, the high accuracy of the measurements, and the lack of significant systematic errors should make this technology attractive for widespread clinical research.

摘要

拉曼光谱有望成为一种用于定量黄斑色素(MP)叶黄素和玉米黄质的新型无创技术。这些化合物属于类胡萝卜素家族,被认为可以预防或延缓年龄相关性黄斑变性的发生,而年龄相关性黄斑变性是老年人不可逆失明的主要原因。它们很可能是通过作为光学滤光片和/或抗氧化剂的功能来实现这种保护作用的。利用可见光区域的共振激发,我们测量并量化了源自π共轭分子主链碳双键(C=C)伸缩振动的拉曼信号。在本手稿中,我们描述了一种新型紧凑型MP拉曼仪器的构建和性能,该仪器利用介电角调谐带通滤波器进行波长选择,并使用单通道光电倍增管检测MP拉曼响应。如我们在模型眼和活人眼实验中所见,MP浓度测量快速且准确。拉曼MP测量的简便性、仪器的简易性、测量的高精度以及缺乏显著的系统误差,应使该技术对广泛的临床研究具有吸引力。

相似文献

1
Simple Raman instrument for in vivo detection of macular pigments.
Appl Spectrosc. 2005 Jul;59(7):861-7. doi: 10.1366/0003702054411616.
2
Macular pigment Raman detector for clinical applications.
J Biomed Opt. 2004 Jan-Feb;9(1):139-48. doi: 10.1117/1.1627776.
3
In vivo resonant Raman measurement of macular carotenoid pigments in the young and the aging human retina.
J Opt Soc Am A Opt Image Sci Vis. 2002 Jun;19(6):1172-86. doi: 10.1364/josaa.19.001172.
4
Noninvasive detection of macular pigments in the human eye.
J Biomed Opt. 2004 Jan-Feb;9(1):75-85. doi: 10.1117/1.1628240.
5
Resonance Raman detection of carotenoid antioxidants in living human tissue.
J Biomed Opt. 2005 Nov-Dec;10(6):064028. doi: 10.1117/1.2139974.
7
Comments on the use of Raman spectroscopy for the in vivo measurement of human macular pigment.
Appl Spectrosc. 2006 Nov;60(11):1348-9; author reply 1350-1. doi: 10.1366/000370206778999067.
8
Raman detection of macular carotenoid pigments in intact human retina.
Invest Ophthalmol Vis Sci. 1998 Oct;39(11):2003-11.
9
Macular carotenoid levels of normal subjects and age-related maculopathy patients in a Japanese population.
Ophthalmology. 2008 Jan;115(1):147-57. doi: 10.1016/j.ophtha.2007.02.028.
10
Resonant Raman detection of macular pigment levels in the living human retina.
Opt Lett. 2001 Feb 15;26(4):202-4. doi: 10.1364/ol.26.000202.

引用本文的文献

1
Harnessing the power of Raman spectroscopic imaging for ophthalmology.
Front Chem. 2023 May 12;11:1211121. doi: 10.3389/fchem.2023.1211121. eCollection 2023.
2
Challenges in Age-Related Macular Degeneration: From Risk Factors to Novel Diagnostics and Prevention Strategies.
Front Med (Lausanne). 2022 Jun 6;9:887104. doi: 10.3389/fmed.2022.887104. eCollection 2022.
4
Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy.
J Biomed Opt. 2018 Sep;23(9):1-20. doi: 10.1117/1.JBO.23.9.091415.
5
Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment.
Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):3094-3103. doi: 10.1167/iovs.18-23886.
6
Fluorescence lifetime imaging ophthalmoscopy.
Prog Retin Eye Res. 2017 Sep;60:120-143. doi: 10.1016/j.preteyeres.2017.06.005. Epub 2017 Jun 30.
7
Resonance Raman based skin carotenoid measurements in newborns and infants.
J Biophotonics. 2013 Oct;6(10):793-802. doi: 10.1002/jbio.201200195. Epub 2012 Nov 29.

本文引用的文献

1
Resonance Raman detection of carotenoid antioxidants in living human tissues.
Opt Lett. 2001 Aug 1;26(15):1179-81. doi: 10.1364/ol.26.001179.
2
Resonant Raman detection of macular pigment levels in the living human retina.
Opt Lett. 2001 Feb 15;26(4):202-4. doi: 10.1364/ol.26.000202.
4
Macular pigment Raman detector for clinical applications.
J Biomed Opt. 2004 Jan-Feb;9(1):139-48. doi: 10.1117/1.1627776.
6
In vivo resonant Raman measurement of macular carotenoid pigments in the young and the aging human retina.
J Opt Soc Am A Opt Image Sci Vis. 2002 Jun;19(6):1172-86. doi: 10.1364/josaa.19.001172.
8
The role of oxidative stress in the pathogenesis of age-related macular degeneration.
Surv Ophthalmol. 2000 Sep-Oct;45(2):115-34. doi: 10.1016/s0039-6257(00)00140-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验