Suppr超能文献

黄粉虫的昆虫抗冻蛋白为何会产生金字塔状冰晶?

Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?

作者信息

Strom Christina S, Liu Xiang Yang, Jia Zongchao

机构信息

Biophysics and Micro/Nanostructures Lab, Department of Physics, Faculty of Science, National University of Singapore, Singapore.

出版信息

Biophys J. 2005 Oct;89(4):2618-27. doi: 10.1529/biophysj.104.056770. Epub 2005 Jul 29.

Abstract

The antifreeze protein (AFP) reduces the growth rates of the ice crystal facets. In that process the ice morphology undergoes a modification. An AFP-induced surface pinning mechanism, through matching of periodic bond chains in two dimensions, enables two-dimensional regular ice-binding surfaces (IBSs) of the insect AFPs to engage a certain class of ice surfaces, called primary surfaces. They are kinetically stable surfaces with unambiguous and predetermined orientations. In this work, the orientations and molecular compositions of the primary ice surfaces that undergo growth rate reduction by the insect AFPs are obtained from first principles. Besides the basal face and primary prism, the ice surfaces engaged by insect AFPs include the specific ice pyramids produced by the insect AFP Tenebrio molitor (TmAFP). TmAFP-induced pyramids differ fundamentally from the ice pyramids produced by fish AFPs and antifreeze protein glycoproteins (AFPGs) as regards the ice surface configurations and the mode of interaction with the protein IBS. The molecular compositions of the TmAFP-induced pyramids are strongly bonded in two dimensions and have the constant face indices (101). In contrast, the molecular composition of the ice pyramids produced by fish AFPs and AFPGs are strongly bonded in only one direction and have variable face indices (h 0 l), none of which equal (101). The thus far puzzling behavior of the TmAFP in producing pyramidal crystallites is fully explained in agreement with experiment.

摘要

抗冻蛋白(AFP)降低了冰晶小面的生长速率。在这个过程中,冰的形态发生了改变。一种由AFP诱导的表面钉扎机制,通过二维周期性键链的匹配,使昆虫AFP的二维规则冰结合表面(IBSs)能够与一类特定的冰表面结合,这类表面称为初级表面。它们是具有明确且预先确定取向的动力学稳定表面。在这项工作中,通过第一性原理获得了因昆虫AFP而生长速率降低的初级冰表面的取向和分子组成。除了基面和初级棱柱面外,昆虫AFP结合的冰表面还包括由昆虫AFP黄粉虫(TmAFP)产生的特定冰棱锥面。就冰表面构型以及与蛋白质IBS的相互作用模式而言,TmAFP诱导的棱锥面与鱼类AFP和抗冻蛋白糖蛋白(AFPGs)产生的冰棱锥面有根本区别。TmAFP诱导的棱锥面的分子组成在二维上紧密结合,具有恒定的面指数(101)。相比之下,鱼类AFP和AFPGs产生的冰棱锥面的分子组成仅在一个方向上紧密结合,具有可变的面指数(h 0 l),其中没有一个等于(101)。至此,TmAFP产生棱柱状微晶这一令人困惑的行为得到了与实验结果相符的充分解释。

相似文献

1
Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
Biophys J. 2005 Oct;89(4):2618-27. doi: 10.1529/biophysj.104.056770. Epub 2005 Jul 29.
2
When are antifreeze proteins in solution essential for ice growth inhibition?
Langmuir. 2015 Jun 2;31(21):5805-11. doi: 10.1021/acs.langmuir.5b00345. Epub 2015 May 18.
3
Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
J Am Chem Soc. 2005 Jan 12;127(1):428-40. doi: 10.1021/ja047652y.
4
Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
Mol Inform. 2016 Jul;35(6-7):268-77. doi: 10.1002/minf.201600034. Epub 2016 Jun 15.
5
Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
J Phys Chem B. 2014 May 8;118(18):4743-52. doi: 10.1021/jp412528b. Epub 2014 Apr 23.
6
High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
Phys Chem Chem Phys. 2010 Sep 21;12(35):10189-97. doi: 10.1039/c002970j. Epub 2010 Jul 29.
8
Operation of Kelvin Effect in the Activities of an Antifreeze Protein: A Molecular Dynamics Simulation Study.
J Phys Chem B. 2018 Mar 29;122(12):3079-3087. doi: 10.1021/acs.jpcb.8b00846. Epub 2018 Mar 19.
9
Systematic size study of an insect antifreeze protein and its interaction with ice.
Biophys J. 2005 Feb;88(2):953-8. doi: 10.1529/biophysj.104.051169.

引用本文的文献

1
Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12.
Extremophiles. 2013 Jan;17(1):63-73. doi: 10.1007/s00792-012-0494-4. Epub 2012 Nov 7.
2
Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.
Mol Biol Rep. 2009 Mar;36(3):529-36. doi: 10.1007/s11033-008-9210-y. Epub 2008 Feb 7.

本文引用的文献

1
Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
J Am Chem Soc. 2005 Jan 12;127(1):428-40. doi: 10.1021/ja047652y.
2
Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins.
Eur J Biochem. 2004 Aug;271(16):3285-96. doi: 10.1111/j.1432-1033.2004.04256.x.
3
Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze.
J Biol Chem. 2004 Feb 13;279(7):6124-31. doi: 10.1074/jbc.M310487200. Epub 2003 Nov 5.
4
Ice nucleation inhibition: mechanism of antifreeze by antifreeze protein.
J Biol Chem. 2003 Sep 19;278(38):36000-4. doi: 10.1074/jbc.M305222200. Epub 2003 Jun 26.
6
A beta-helical antifreeze protein isoform with increased activity. Structural and functional insights.
J Biol Chem. 2002 Sep 6;277(36):33349-52. doi: 10.1074/jbc.M205575200. Epub 2002 Jun 24.
7
Crystal structure of beta-helical antifreeze protein points to a general ice binding model.
Structure. 2002 May;10(5):619-27. doi: 10.1016/s0969-2126(02)00745-1.
8
Antifreeze proteins: an unusual receptor-ligand interaction.
Trends Biochem Sci. 2002 Feb;27(2):101-6. doi: 10.1016/s0968-0004(01)02028-x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验