Chang Tina, Schroder Laura A, Thomson J Michael, Klocman Amy S, Tomasini Amber J, Strømhaug Per E, Dunn William A
Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA.
Mol Biol Cell. 2005 Oct;16(10):4941-53. doi: 10.1091/mbc.e05-02-0143. Epub 2005 Aug 3.
When Pichia pastoris adapts from methanol to glucose growth, peroxisomes are rapidly sequestered and degraded within the vacuole by micropexophagy. During micropexophagy, sequestering membranes arise from the vacuole to engulf the peroxisomes. Fusion of the sequestering membranes and incorporation of the peroxisomes into the vacuole is mediated by the micropexophagy-specific membrane apparatus (MIPA). In this study, we show the P. pastoris ortholog of Atg9, a novel membrane protein is essential for the formation of the sequestering membranes and assembly of MIPA. During methanol growth, GFP-PpAtg9 localizes to multiple structures situated near the plasma membrane referred as the peripheral compartment (Atg9-PC). On glucose-induced micropexophagy, PpAtg9 traffics from the Atg9-PC to unique perivacuolar structures (PVS) that contain PpAtg11, but lack PpAtg2 and PpAtg8. Afterward, PpAtg9 distributes to the vacuole surface and sequestering membranes. Movement of the PpAtg9 from the Atg9-PC to the PVS requires PpAtg11 and PpVps15. PpAtg2 and PpAtg7 are essential for PpAtg9 trafficking from the PVS to the vacuole and sequestering membranes, whereas trafficking of PpAtg9 proceeds independent of PpAtg1, PpAtg18, and PpVac8. In summary, our data suggest that PpAtg9 transits from the Atg9-PC to the PVS and then to the sequestering membranes that engulf the peroxisomes for degradation.
当巴斯德毕赤酵母从甲醇生长适应为葡萄糖生长时,过氧化物酶体通过微过氧化物酶体自噬在液泡内迅速被隔离并降解。在微过氧化物酶体自噬过程中,隔离膜从液泡产生以吞噬过氧化物酶体。隔离膜的融合以及过氧化物酶体并入液泡是由微过氧化物酶体自噬特异性膜装置(MIPA)介导的。在本研究中,我们表明Atg9的巴斯德毕赤酵母直系同源物,一种新型膜蛋白,对于隔离膜的形成和MIPA的组装至关重要。在甲醇生长期间,GFP-PpAtg9定位于位于质膜附近的多个结构,称为外周区室(Atg9-PC)。在葡萄糖诱导的微过氧化物酶体自噬过程中,PpAtg9从Atg9-PC转运到独特的液泡周围结构(PVS),这些结构含有PpAtg11,但缺乏PpAtg2和PpAtg8。之后,PpAtg9分布到液泡表面和隔离膜。PpAtg9从Atg9-PC到PVS的移动需要PpAtg11和PpVps15。PpAtg2和PpAtg7对于PpAtg9从PVS转运到液泡和隔离膜至关重要,而PpAtg9的转运独立于PpAtg1、PpAtg18和PpVac8进行。总之,我们的数据表明PpAtg9从Atg9-PC转运到PVS,然后转运到隔离膜,这些隔离膜吞噬过氧化物酶体进行降解。