Bennett Stacie, Finer Neil N, Rich Wade, Vaucher Yvonne
Department of Pediatrics, Division of Neonatology, UCSD Medical Center, 401 Dickenson, MPF 1-140, San Diego, CA 92103-8774, USA.
Resuscitation. 2005 Oct;67(1):113-8. doi: 10.1016/j.resuscitation.2005.02.016.
Ventilation during neonatal resuscitation involves the use of self-inflating bags, flow-inflating bags, and T-piece resuscitators. The ability of operators to deliver desired peak inspiratory pressures (PIP), positive end expiratory pressures (PEEP), prolonged inflations and the length of time to transition between different pressures has not been compared for all three of these devices.
To compare the ability of neonatal resuscitation personnel to deliver predetermined ventilation interventions using these devices in advance of a clinical trial of neonatal resuscitation.
DESIGN/METHODS: We studied 31 operators (neomatologists, neonatal respiratory therapists, neonatal fellows, a pediatrician, pediatric residents, neonatal nurse practitioners, and neonatal nurses) using a T-piece resuscitator (Neopuff), Fisher and Paykel Healthcare, Auckland, New Zealand), a self-inflating bag (Baby Blue II, Vital Signs, Totowa, NJ), and a flow-inflating bag (Model E191 Anesthesia Associates, San Marcos, CA). The self-inflating bag was tested with and without the manufacturer's PEEP valve. Using a continuous pressure recording system and a neonatal manikin, we evaluated the ability to deliver a consistent PIP of 20 or 40 cmH2O and a PEEP of 5 cmH2O during 30 s of ventilation, the ability to maintain a 5 s inflation at a PIP of 20 cmH2O and the time to transition from a PIP of 20 to 40 cmH2O. Each device was evaluated with and without a qualitative CO2 detector (Pedicap) Nellcor Pleasanton, CA).
The T-piece resuscitator delivered the desired PIP more precisely and consistently compared with the self-inflating bag at a target of 20 cmH2O (maximum PIP 20.7 cmH2O, S.D.=0.8 versus 24.7 cmH2O, S.D.=2.8; p<0.001). At a target of 40 cmH2O, the maximum pressure delivered with the T-piece resuscitator was significantly less than both the flow-inflating bag and the self-inflating bag (39.7 cmH2O, S.D.=2.1 versus 44 cmH2O, S.D.=3.3 versus 45.3 cmH2O, S.D.=4.7; p<0.001). It took significantly longer to increase the PIP from 20 to 40 cmH2O using the T-piece resuscitator compared to the self-inflating bag or the flow-inflating bag (5.7 s versus 2.2 s versus 1.8 s; p<0.001), and three operators could not make the transition in the allotted 15 s time limit. During the 5 s prolonged inflation, the T-piece resuscitator and the flow-inflating bag maintained a pressure greater than 18 cmH2O for a longer time than the self-inflating bag (4 s versus 3.7 s versus 2.2 s; p<0.001). The self-inflating bag with the PEEP valve in place provided significantly less PEEP than both the T-piece resuscitator and the flow-inflating bag (3.6 cmH2O versus 4.4 cmH2O versus 4.4 cmH2O; p<0.005). The Pedicap did not significantly affect any of the observed results, and there were no consistent operator differences between different disciplines or years of experience.
The T-piece resuscitator delivered the desired pressures more accurately, but required greater time to increase the PIP from 20 to 40 cmH2O. It was difficult to maintain a prolonged inflation and deliver the desired PEEP with the self-inflating bag even with the PEEP valve in place. There is a need for improvement in the design and function of current manual resuscitation devices and for prospective trials to evaluate the optimal method of bag and mask ventilation during resuscitation of the newborn infant.
新生儿复苏时的通气涉及使用自动充气式气囊、气流充气式气囊和T组合复苏器。尚未对这三种设备的操作人员输送所需的吸气峰压(PIP)、呼气末正压(PEEP)、延长充气时间以及在不同压力之间转换的时间进行比较。
在新生儿复苏临床试验之前,比较新生儿复苏人员使用这些设备进行预定通气干预的能力。
设计/方法:我们研究了31名操作人员(新生儿科医生、新生儿呼吸治疗师、新生儿研究员、一名儿科医生、儿科住院医师、新生儿执业护士和新生儿护士),使用了一种T组合复苏器(Neopuff,费雪派克医疗保健公司,新西兰奥克兰)、一个自动充气式气囊(Baby Blue II,生命体征公司,美国新泽西州托托瓦)和一个气流充气式气囊(型号E191,麻醉联合公司,美国加利福尼亚州圣马科斯)。自动充气式气囊在安装和未安装制造商的PEEP阀的情况下进行了测试。使用连续压力记录系统和新生儿人体模型,我们评估了在通气30秒期间输送20或40 cmH₂O的一致PIP以及5 cmH₂O的PEEP的能力、在20 cmH₂O的PIP下维持5秒充气的能力以及从20 cmH₂O的PIP转换到40 cmH₂O的时间。每个设备在安装和未安装定性二氧化碳探测器(Pedicap,Nellcor公司,美国加利福尼亚州普莱森顿)的情况下进行了评估。
与自动充气式气囊相比,T组合复苏器在目标为20 cmH₂O时更精确、更一致地输送所需的PIP(最大PIP 20.7 cmH₂O,标准差=0.8,而自动充气式气囊为24.7 cmH₂O,标准差=2.8;p<0.001)。在目标为40 cmH₂O时,T组合复苏器输送的最大压力显著低于气流充气式气囊和自动充气式气囊(39.7 cmH₂O,标准差=2.1,而气流充气式气囊为44 cmH₂O,标准差=3.3,自动充气式气囊为45.3 cmH₂O,标准差=4.7;p<0.001)。与自动充气式气囊或气流充气式气囊相比,使用T组合复苏器将PIP从20 cmH₂O增加到40 cmH₂O所需的时间显著更长(5.7秒对2.2秒对1.8秒;p<0.001),并且三名操作人员在规定的15秒时间限制内无法完成转换。在5秒的延长充气期间,T组合复苏器和气流充气式气囊维持大于18 cmH₂O的压力的时间比自动充气式气囊更长(4秒对3.7秒对2.2秒;p<0.001)。安装了PEEP阀的自动充气式气囊提供的PEEP显著低于T组合复苏器和气流充气式气囊(3.6 cmH₂O对4.4 cmH₂O对4.4 cmH₂O;p<0.005)。Pedicap对任何观察结果均无显著影响,不同学科或不同经验年限的操作人员之间也没有一致的差异。
T组合复苏器更准确地输送所需压力,但将PIP从20 cmH₂O增加到40 cmH₂O需要更长时间。即使安装了PEEP阀,使用自动充气式气囊也难以维持延长充气并输送所需的PEEP。需要改进当前手动复苏设备的设计和功能,并进行前瞻性试验以评估新生儿复苏期间气囊面罩通气的最佳方法。