Suppr超能文献

临床癌症蛋白质组学:前景与陷阱

Clinical cancer proteomics: promises and pitfalls.

作者信息

Alaiya Ayodele, Al-Mohanna Mai, Linder Stig

机构信息

Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354 Riyadh 11211 (MBC#03), Saudi Arabia.

出版信息

J Proteome Res. 2005 Jul-Aug;4(4):1213-22. doi: 10.1021/pr050149f.

Abstract

Proteome analysis promises to be valuable for the identification of tissue and serum biomarkers associated with human malignancies. In addition, proteome technologies offer the opportunity to analyze protein expression profiles and to analyze the activity of signaling pathways. Many published proteomic studies of human tumor tissue are associated with weaknesses in tumor representativity, sample contamination by nontumor cells and serum proteins. Studies often include a moderate number of tumors which may not be representative of clinical materials. It is therefore very important that biomarkers identified by proteomics are validated in representative tumor materials by other techniques, such as immunohistochemistry. Proteome technologies can be used to identify disease markers in human serum. Tumor derived proteins are present at nanomolar to picomolar concentrations in cancer patient sera, 10(6)-10(9)-fold lower than albumin, and will give rise to correspondingly smaller spots/peaks in protein separations. This leads to the need to prefractionate serum samples before analysis. Despite various pitfalls, proteomic analysis is a promising approach to the identification of biomarkers, and for generation of protein expression profiles that can be analyzed by artificial learning methods for improved diagnosis of human malignancy. Recent advances in the field of proteomic analysis of human tumors are summarized in the present review.

摘要

蛋白质组分析有望在鉴定与人类恶性肿瘤相关的组织和血清生物标志物方面发挥重要作用。此外,蛋白质组技术为分析蛋白质表达谱以及信号通路活性提供了契机。许多已发表的关于人类肿瘤组织的蛋白质组学研究存在肿瘤代表性不足、非肿瘤细胞和血清蛋白污染样本等问题。研究通常纳入数量有限的肿瘤样本,可能无法代表临床材料。因此,通过蛋白质组学鉴定出的生物标志物利用免疫组织化学等其他技术在具有代表性的肿瘤材料中进行验证至关重要。蛋白质组技术可用于鉴定人血清中的疾病标志物。肿瘤衍生蛋白在癌症患者血清中的浓度为纳摩尔至皮摩尔级别,比白蛋白低10⁶ - 10⁹倍,在蛋白质分离过程中会产生相应较小的斑点/峰。这就需要在分析前对血清样本进行预分级分离。尽管存在各种问题,但蛋白质组分析仍是一种有前景的方法,可用于鉴定生物标志物以及生成蛋白质表达谱,进而通过人工智能学习方法进行分析以改善人类恶性肿瘤的诊断。本综述总结了人类肿瘤蛋白质组分析领域的最新进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验