Suppr超能文献

通过小角X射线散射测定的不同pH值下细菌胞外聚合物的结构

Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS.

作者信息

Dogsa Iztok, Kriechbaum Manfred, Stopar David, Laggner Peter

机构信息

Laboratory for Biophysics, Jozef Stefan Institute, Ljubljana, Slovenia.

出版信息

Biophys J. 2005 Oct;89(4):2711-20. doi: 10.1529/biophysj.105.061648. Epub 2005 Aug 5.

Abstract

Extracellular polymeric substances (EPS) play an important role in cell aggregation, cell adhesion, and biofilm formation, and protect cells from a hostile environment. The EPS was isolated by trichloroacetic acid/ethanol extraction from broth culture of a marine bacterium isolate. The EPS was composed of glucose and galactose as determined by HPLC and TLC; the protein content was on average 15 +/- 5% of EPS dry mass. The solution structure of EPS at different values of pH was revealed by small-angle x-ray scattering. Scattering curves of EPS solutions (0.4%, w/v) consistently showed two nearly linear log-log regions with slopes a and b in the q-ranges from 0.06 nm(-1) to 0.26 nm(-1), and from 0.27 nm(-1) to 0.88 nm(-1), respectively. Slope a was sensitive to pH changes whereas slope b was not. The observed sensitivity to pH was not a consequence of ionic strength variation with pH, as checked by salt addition. The pH variation causes major rearrangements of EPS structure mainly at length scales above 24 nm. To get a better understanding of the pH effect on EPS structure, the original model proposed by Geissler was refined into a mathematical model that enabled fitting of the experimental scattering curves in the pH range from 0.7 to 11.0. The model describes EPS structure as a network of randomly coiled polymeric chains with denser domains of polymeric chains. The results obtained from the model indicate that dense domains increase in average size from 19 nm at pH 11.0 to 52 nm at pH 0.7. The average distance between the polysaccharide chains at pH 0.7 was 2.3 nm, which indicates a compact EPS structure. Swelling was found to be at a maximum around pH = 8.8, where the average distance between the chains was 4.8 nm.

摘要

胞外聚合物(EPS)在细胞聚集、细胞黏附及生物膜形成过程中发挥着重要作用,并能保护细胞免受恶劣环境的影响。通过三氯乙酸/乙醇萃取法从一株海洋细菌分离株的肉汤培养物中分离出EPS。经高效液相色谱(HPLC)和薄层色谱(TLC)测定,EPS由葡萄糖和半乳糖组成;蛋白质含量平均占EPS干质量的15±5%。通过小角X射线散射揭示了不同pH值下EPS的溶液结构。EPS溶液(0.4%,w/v)的散射曲线在q范围分别为0.06 nm-1至0.26 nm-1和0.27 nm-1至0.88 nm-1时,始终显示出两个斜率分别为a和b的近似线性的对数-对数区域。斜率a对pH变化敏感,而斜率b则不敏感。如通过添加盐所检测的那样,观察到的对pH的敏感性并非离子强度随pH变化的结果。pH变化主要在长度尺度大于24 nm时引起EPS结构的重大重排。为了更好地理解pH对EPS结构的影响,将Geissler提出的原始模型细化为一个数学模型,该模型能够拟合pH范围为0.7至11.0的实验散射曲线。该模型将EPS结构描述为随机卷曲的聚合物链网络以及聚合物链的致密区域。从该模型获得的结果表明,致密区域的平均尺寸从pH 11.0时的19 nm增加到pH 0.7时的52 nm。在pH = 8.8左右发现肿胀最大,此时链间平均距离为4.8 nm。

相似文献

1
Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS.
Biophys J. 2005 Oct;89(4):2711-20. doi: 10.1529/biophysj.105.061648. Epub 2005 Aug 5.
2
Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols.
Appl Microbiol Biotechnol. 2010 Feb;85(5):1589-99. doi: 10.1007/s00253-009-2288-x. Epub 2009 Oct 28.
3
Adsorption mechanism of extracellular polymeric substances from two bacteria on Ultisol and Alfisol.
Environ Pollut. 2018 Jun;237:39-49. doi: 10.1016/j.envpol.2018.01.075. Epub 2018 Feb 20.
4
Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus.
Biochim Biophys Acta. 2015 Feb;1848(2):518-26. doi: 10.1016/j.bbamem.2014.11.007. Epub 2014 Nov 22.
5
Stability of sludge flocs under shear conditions: roles of extracellular polymeric substances (EPS).
Biotechnol Bioeng. 2006 Apr 20;93(6):1095-102. doi: 10.1002/bit.20819.
9
Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values.
J Hazard Mater. 2008 Feb 28;151(1):185-93. doi: 10.1016/j.jhazmat.2007.05.070. Epub 2007 May 31.
10
pH dependence of structure and surface properties of microbial EPS.
Environ Sci Technol. 2012 Jan 17;46(2):737-44. doi: 10.1021/es203540w. Epub 2012 Jan 4.

引用本文的文献

1
Structure of the Scleroglucan Biopolymer in Aqueous Solutions of Inorganic Salts and Ionic Liquids.
ACS Omega. 2025 Jun 11;10(24):25884-25893. doi: 10.1021/acsomega.5c02212. eCollection 2025 Jun 24.
4
Extraction Strategies for Profiling the Molecular Composition of Particulate Organic Matter on Glacier Surfaces.
Environ Sci Technol. 2025 Mar 11;59(9):4455-4468. doi: 10.1021/acs.est.4c10088. Epub 2025 Feb 27.
5
Yielding behaviour of chemically treated biofilms.
Biofilm. 2024 Jul 3;8:100209. doi: 10.1016/j.bioflm.2024.100209. eCollection 2024 Dec.
9
Enzymatic Disruption of Biofilms During Cheese Manufacturing: A Mini Review.
Front Microbiol. 2021 Dec 16;12:791061. doi: 10.3389/fmicb.2021.791061. eCollection 2021.
10
Dependency of hydration and growth conditions on the mechanical properties of oral biofilms.
Sci Rep. 2021 Aug 10;11(1):16234. doi: 10.1038/s41598-021-95701-4.

本文引用的文献

2
Hydrodynamic properties of oxidized extracellular polysaccharides from Erwinia chrysanthemi spp.
Carbohydr Res. 2003 Nov 14;338(23):2763-71. doi: 10.1016/j.carres.2003.06.001.
3
Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels.
Biomacromolecules. 2003 Nov-Dec;4(6):1661-8. doi: 10.1021/bm034105g.
5
Physical properties of an extracellular polysaccharide produced by Bacillus sp. CP912.
Lett Appl Microbiol. 2003;36(5):282-7. doi: 10.1046/j.1472-765x.2003.01309.x.
6
Microbiology: breaking down biofilms.
Curr Biol. 2002 Feb 19;12(4):R132-4. doi: 10.1016/s0960-9822(02)00706-6.
7
Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7.
Environ Microbiol. 2001 Dec;3(12):774-84. doi: 10.1046/j.1462-2920.2001.00248.x.
8
Structural investigations of cross-linked hyaluronan.
Biomaterials. 2002 Feb;23(4):1161-7. doi: 10.1016/s0142-9612(01)00231-9.
9
Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291.
Carbohydr Res. 2001 Mar 22;331(2):183-94. doi: 10.1016/s0008-6215(01)00012-x.
10
Structure of the exopolysaccharide produced by Streptococcus thermophilus S3.
Carbohydr Res. 2001 Mar 22;331(2):173-82. doi: 10.1016/s0008-6215(01)00013-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验