Chi Hyun, Ji Geun-Eog
Department of Food and Nutrition, Seoul National University, 151-742, Seoul, South Korea.
Biotechnol Lett. 2005 Jun;27(11):765-71. doi: 10.1007/s10529-005-5632-y.
Ginsenosides Rb1 and Re, respectively belonging to the major protopanaxadiol and protopanaxatriol ginsenosides, were transformed using cell-free extracts from food microorganisms. Rb1 was transformed into compound K via Rd and F2 by Bifidobacterium sp. Int57, Bif. sp. SJ32, Aspergillus niger and A. usamii. Lactobacillus delbrueckii, and Leuconostoc paramesenteroides transformed Rb1 into Rh2 via Rd and F2. Bifidobacterium sp. SH5 transformed Rb1 into F2 via Rd. Re was transformed into Rh1 via Rg2 by Bif. sp. Int57 and Bif. sp. SJ32. A. niger transformed Re into Rh1 via Rg1. A. usamii transformed Re into Rg2. Transformation of Rb1 proceeded at a higher rate and needed less amount of enzymes than that of Re. Taken together, these processes would allow a specific bioconversion process possible to obtain specific ginsenosides using an appropriate combination of ginsenoside substrates and specific microbial enzymes.
人参皂苷Rb1和Re分别属于主要的原人参二醇型和原人参三醇型人参皂苷,利用食品微生物的无细胞提取物对其进行转化。双歧杆菌属Int57、双歧杆菌属SJ32、黑曲霉和宇佐美曲霉将Rb1通过Rd和F2转化为化合物K。德氏乳杆菌和肠膜明串珠菌将Rb1通过Rd和F2转化为Rh2。双歧杆菌属SH5将Rb1通过Rd转化为F2。双歧杆菌属Int57和双歧杆菌属SJ32将Re通过Rg2转化为Rh1。黑曲霉将Re通过Rg1转化为Rh1。宇佐美曲霉将Re转化为Rg2。Rb1的转化速率更高,所需的酶量比Re少。综上所述,这些过程将使特定的生物转化过程成为可能,即使用合适的人参皂苷底物和特定的微生物酶组合来获得特定的人参皂苷。