Suppr超能文献

基于神经网络的混合算法在无线多跳网络中的广播调度

Broadcast scheduling in wireless multihop networks using a neural-network-based hybrid algorithm.

作者信息

Shi Haixiang, Wang Lipo

机构信息

Software Engineering Laboratory, School of Electrical & Electronic Engineering, Nanyang Technological University, S2.2-B4-04, 50 Nanyang Avenue, 639798, Singapore.

出版信息

Neural Netw. 2005 Jun-Jul;18(5-6):765-71. doi: 10.1016/j.neunet.2005.06.013.

Abstract

In wireless multihop networks, the objective of the broadcast scheduling problem is to find a conflict free transmission schedule for each node at different time slots in a fixed length time cycle, called TDMA cycle. The optimization criterion is to find an optimal TDMA schedule with minimal TDMA cycle length and maximal node transmissions. In this paper we propose a two-stage hybrid method to solve this broadcast scheduling problem in wireless multihop networks. In the first stage, we use a sequential vertex-coloring algorithm to obtain a minimal TDMA frame length. In the second stage, we apply the noisy chaotic neural network to find the maximum node transmission based on the results obtained in the previous stage. Simulation results show that this hybrid method outperforms previous approaches, such as mean field annealing, a hybrid of the Hopfield neural network and genetic algorithms, the sequential vertex coloring algorithm, and the gradual neural network.

摘要

在无线多跳网络中,广播调度问题的目标是在一个固定长度的时间周期(称为时分多址(TDMA)周期)内,为每个节点在不同时隙找到一个无冲突的传输调度。优化标准是找到一个具有最小TDMA周期长度和最大节点传输量的最优TDMA调度。在本文中,我们提出了一种两阶段混合方法来解决无线多跳网络中的这个广播调度问题。在第一阶段,我们使用一种顺序顶点着色算法来获得最小的TDMA帧长度。在第二阶段,我们应用噪声混沌神经网络,根据上一阶段获得的结果来找到最大的节点传输量。仿真结果表明,这种混合方法优于先前的方法,如平均场退火、霍普菲尔德神经网络与遗传算法的混合方法、顺序顶点着色算法以及渐进神经网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验