Shi Haixiang, Wang Lipo
Software Engineering Laboratory, School of Electrical & Electronic Engineering, Nanyang Technological University, S2.2-B4-04, 50 Nanyang Avenue, 639798, Singapore.
Neural Netw. 2005 Jun-Jul;18(5-6):765-71. doi: 10.1016/j.neunet.2005.06.013.
In wireless multihop networks, the objective of the broadcast scheduling problem is to find a conflict free transmission schedule for each node at different time slots in a fixed length time cycle, called TDMA cycle. The optimization criterion is to find an optimal TDMA schedule with minimal TDMA cycle length and maximal node transmissions. In this paper we propose a two-stage hybrid method to solve this broadcast scheduling problem in wireless multihop networks. In the first stage, we use a sequential vertex-coloring algorithm to obtain a minimal TDMA frame length. In the second stage, we apply the noisy chaotic neural network to find the maximum node transmission based on the results obtained in the previous stage. Simulation results show that this hybrid method outperforms previous approaches, such as mean field annealing, a hybrid of the Hopfield neural network and genetic algorithms, the sequential vertex coloring algorithm, and the gradual neural network.
在无线多跳网络中,广播调度问题的目标是在一个固定长度的时间周期(称为时分多址(TDMA)周期)内,为每个节点在不同时隙找到一个无冲突的传输调度。优化标准是找到一个具有最小TDMA周期长度和最大节点传输量的最优TDMA调度。在本文中,我们提出了一种两阶段混合方法来解决无线多跳网络中的这个广播调度问题。在第一阶段,我们使用一种顺序顶点着色算法来获得最小的TDMA帧长度。在第二阶段,我们应用噪声混沌神经网络,根据上一阶段获得的结果来找到最大的节点传输量。仿真结果表明,这种混合方法优于先前的方法,如平均场退火、霍普菲尔德神经网络与遗传算法的混合方法、顺序顶点着色算法以及渐进神经网络。