Falconer Ruth E, Bown James L, White Nia A, Crawford John W
SIMBIOS Centre, University of Abertay, Dundee DD1 1HG, UK.
Proc Biol Sci. 2005 Aug 22;272(1573):1727-34. doi: 10.1098/rspb.2005.3150.
Fungi are one of the most important and widespread components of the biosphere, and are essential for the growth of over 90% of all vascular plants. Although they are a separate kingdom of life, we know relatively little about the origins of their ubiquitous existence. This reflects a wider ignorance arising from their status as indeterminate organisms epitomized by extreme phenotypic plasticity that is essential for survival in complex environments. Here we show that the fungal phenotype may have its origins in the defining characteristic of indeterminate organisms, namely their ability to recycle locally immobilized internal resources into a mobilized form capable of being directed to new internal sinks. We show that phenotype can be modelled as an emergent phenomenon resulting from the interplay between simple local processes governing uptake and remobilization of internal resources, and macroscopic processes associated with their transport. Observed complex growth forms are reproduced and the sensitive dependence of phenotype on environmental context may be understood in terms of nonlinearities associated with regulation of the recycling apparatus.
真菌是生物圈中最重要且分布最广泛的组成部分之一,对90%以上的维管植物生长至关重要。尽管它们是一个独立的生命王国,但我们对其普遍存在的起源了解相对较少。这反映出由于它们作为不确定生物的地位而产生的更广泛的无知,这种不确定性以极端的表型可塑性为典型,而这种可塑性对于在复杂环境中生存至关重要。在这里,我们表明真菌表型可能起源于不确定生物的决定性特征,即它们能够将局部固定的内部资源循环利用为可导向新的内部汇的可移动形式。我们表明,表型可以被建模为一种涌现现象,这种现象是由控制内部资源吸收和再利用的简单局部过程与与其运输相关的宏观过程之间的相互作用产生的。观察到的复杂生长形式得以重现,并且表型对环境背景的敏感依赖性可以根据与循环利用机制调节相关的非线性来理解。