Suppr超能文献

真菌菌丝体中的生物质循环利用与表型起源

Biomass recycling and the origin of phenotype in fungal mycelia.

作者信息

Falconer Ruth E, Bown James L, White Nia A, Crawford John W

机构信息

SIMBIOS Centre, University of Abertay, Dundee DD1 1HG, UK.

出版信息

Proc Biol Sci. 2005 Aug 22;272(1573):1727-34. doi: 10.1098/rspb.2005.3150.

Abstract

Fungi are one of the most important and widespread components of the biosphere, and are essential for the growth of over 90% of all vascular plants. Although they are a separate kingdom of life, we know relatively little about the origins of their ubiquitous existence. This reflects a wider ignorance arising from their status as indeterminate organisms epitomized by extreme phenotypic plasticity that is essential for survival in complex environments. Here we show that the fungal phenotype may have its origins in the defining characteristic of indeterminate organisms, namely their ability to recycle locally immobilized internal resources into a mobilized form capable of being directed to new internal sinks. We show that phenotype can be modelled as an emergent phenomenon resulting from the interplay between simple local processes governing uptake and remobilization of internal resources, and macroscopic processes associated with their transport. Observed complex growth forms are reproduced and the sensitive dependence of phenotype on environmental context may be understood in terms of nonlinearities associated with regulation of the recycling apparatus.

摘要

真菌是生物圈中最重要且分布最广泛的组成部分之一,对90%以上的维管植物生长至关重要。尽管它们是一个独立的生命王国,但我们对其普遍存在的起源了解相对较少。这反映出由于它们作为不确定生物的地位而产生的更广泛的无知,这种不确定性以极端的表型可塑性为典型,而这种可塑性对于在复杂环境中生存至关重要。在这里,我们表明真菌表型可能起源于不确定生物的决定性特征,即它们能够将局部固定的内部资源循环利用为可导向新的内部汇的可移动形式。我们表明,表型可以被建模为一种涌现现象,这种现象是由控制内部资源吸收和再利用的简单局部过程与与其运输相关的宏观过程之间的相互作用产生的。观察到的复杂生长形式得以重现,并且表型对环境背景的敏感依赖性可以根据与循环利用机制调节相关的非线性来理解。

相似文献

1
Biomass recycling and the origin of phenotype in fungal mycelia.
Proc Biol Sci. 2005 Aug 22;272(1573):1727-34. doi: 10.1098/rspb.2005.3150.
2
The Mycelium as a Network.
Microbiol Spectr. 2017 May;5(3). doi: 10.1128/microbiolspec.FUNK-0033-2017.
3
Modelling interactions in fungi.
J R Soc Interface. 2008 Jun 6;5(23):603-15. doi: 10.1098/rsif.2007.1210.
4
Biological solutions to transport network design.
Proc Biol Sci. 2007 Sep 22;274(1623):2307-15. doi: 10.1098/rspb.2007.0459.
5
Modelling the qualitative response of fungal mycelia to heterogeneous environments.
J Theor Biol. 1998 Dec 7;195(3):281-92. doi: 10.1006/jtbi.1998.0739.
6
Modelling combat strategies in fungal mycelia.
J Theor Biol. 2012 Jul 7;304:226-34. doi: 10.1016/j.jtbi.2012.03.036. Epub 2012 Apr 5.
7
Modelling mycelial networks in structured environments.
Mycol Res. 2008 Sep;112(Pt 9):1015-25. doi: 10.1016/j.mycres.2008.02.006. Epub 2008 Mar 25.
8
Evolutionary significance of imbalanced nuclear ratios within heterokaryons of the basidiomycete fungus Heterobasidion parviporum.
Evolution. 2008 Sep;62(9):2279-96. doi: 10.1111/j.1558-5646.2008.00462.x. Epub 2008 Jul 15.
9
Mathematical models of mycelium growth and ergosterol synthesis in stationary mould culture.
Lett Appl Microbiol. 2009 May;48(5):605-10. doi: 10.1111/j.1472-765X.2009.02577.x. Epub 2009 Mar 9.
10
Growth and function of fungal mycelia in heterogeneous environments.
Bull Math Biol. 2003 May;65(3):447-77. doi: 10.1016/S0092-8240(03)00003-X.

引用本文的文献

2
Full identification of a growing and branching network's spatio-temporal structures.
Biophys J. 2025 Jan 21;124(2):284-296. doi: 10.1016/j.bpj.2024.12.002. Epub 2024 Dec 5.
4
Phase-field modeling of constrained interactive fungal networks.
J Mech Phys Solids. 2020 Dec;145. doi: 10.1016/j.jmps.2020.104160. Epub 2020 Sep 19.
6
Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi.
Sci Rep. 2019 Oct 2;9(1):14152. doi: 10.1038/s41598-019-50565-7.
8
The Mycelium as a Network.
Microbiol Spectr. 2017 May;5(3). doi: 10.1128/microbiolspec.FUNK-0033-2017.
9
Phenotype MicroArrays as a complementary tool to next generation sequencing for characterization of tree endophytes.
Front Microbiol. 2015 Sep 28;6:1033. doi: 10.3389/fmicb.2015.01033. eCollection 2015.
10
Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation.
PLoS One. 2015 May 19;10(5):e0123774. doi: 10.1371/journal.pone.0123774. eCollection 2015.

本文引用的文献

1
Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis.
New Phytol. 1989 Apr;111(4):699-705. doi: 10.1111/j.1469-8137.1989.tb02365.x.
2
The effects of fungal inoculum arrangement (scale and context) on emergent community development in an agar model system.
FEMS Microbiol Ecol. 2002 Jan 1;39(1):9-16. doi: 10.1111/j.1574-6941.2002.tb00901.x.
3
Simulating colonial growth of fungi with the Neighbour-Sensing model of hyphal growth.
Mycol Res. 2004 Nov;108(Pt 11):1241-56. doi: 10.1017/s0953756204001261.
4
Interactions and self-organization in the soil-microbe complex.
Science. 2004 Jun 11;304(5677):1634-7. doi: 10.1126/science.1097394.
5
Growth and function of fungal mycelia in heterogeneous environments.
Bull Math Biol. 2003 May;65(3):447-77. doi: 10.1016/S0092-8240(03)00003-X.
6
Functional consequences of nutrient translocation in mycelial fungi.
J Theor Biol. 2002 Aug 21;217(4):459-77. doi: 10.1006/jtbi.2002.3048.
7
Translocation induced outgrowth of fungi in nutrient-free environments.
J Theor Biol. 2000 Jul 7;205(1):73-84. doi: 10.1006/jtbi.2000.2045.
8
Aggregation and collapse in a mechanical model of fungal tip growth.
J Math Biol. 1999 Aug;39(2):109-38. doi: 10.1007/s002850050165.
9
Formation of morphological differentiation patterns in the ascomycete Neurospora crassa.
Mech Dev. 1993 Nov;44(1):17-31. doi: 10.1016/0925-4773(93)90013-n.
10
A model for hyphal growth and branching.
J Gen Microbiol. 1979 Mar;111(1):153-64. doi: 10.1099/00221287-111-1-153.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验