Suppr超能文献

使用独立成分分析对静息态连接性进行的研究。

Investigations into resting-state connectivity using independent component analysis.

作者信息

Beckmann Christian F, DeLuca Marilena, Devlin Joseph T, Smith Stephen M

机构信息

Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13. doi: 10.1098/rstb.2005.1634.

Abstract

Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific investigations into the structure of these effects. We apply PICA to fMRI data acquired at rest, in order to characterize the spatio-temporal structure of such data, and demonstrate that this is an effective and robust tool for the identification of low-frequency resting-state patterns from data acquired at various different spatial and temporal resolutions. We show that these networks exhibit high spatial consistency across subjects and closely resemble discrete cortical functional networks such as visual cortical areas or sensory-motor cortex.

摘要

从功能磁共振成像(fMRI)数据中推断静息态连接模式,对于任何分析技术而言都是一项具有挑战性的任务。在本文中,我们回顾了一种针对fMRI数据优化的概率独立成分分析(PICA)方法,并讨论了这种探索性技术在对这些效应结构的科学研究中所能发挥的作用。我们将PICA应用于静息状态下采集的fMRI数据,以表征此类数据的时空结构,并证明这是一种从以各种不同空间和时间分辨率采集的数据中识别低频静息态模式的有效且稳健的工具。我们表明,这些网络在不同个体间表现出高度的空间一致性,并且与诸如视觉皮层区域或感觉运动皮层等离散的皮层功能网络极为相似。

相似文献

1
Investigations into resting-state connectivity using independent component analysis.
Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13. doi: 10.1098/rstb.2005.1634.
2
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
3
Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
Neuroimage. 2014 Feb 15;87:363-82. doi: 10.1016/j.neuroimage.2013.10.062. Epub 2013 Nov 5.
4
Resting network is composed of more than one neural pattern: an fMRI study.
Neuroscience. 2014 Aug 22;274:198-208. doi: 10.1016/j.neuroscience.2014.05.035. Epub 2014 May 29.
5
Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.
Neuroradiol J. 2017 Aug;30(4):305-317. doi: 10.1177/1971400917697342. Epub 2017 Mar 29.
6
Anticorrelated networks in resting-state fMRI-BOLD data.
Biomed Mater Eng. 2015;26 Suppl 1:S1201-11. doi: 10.3233/BME-151417.
7
Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
Brain Connect. 2016 Mar;6(2):122-35. doi: 10.1089/brain.2014.0336. Epub 2015 Oct 13.
8
Brain modifications after acute alcohol consumption analyzed by resting state fMRI.
Magn Reson Imaging. 2013 Oct;31(8):1325-30. doi: 10.1016/j.mri.2013.04.007. Epub 2013 May 14.
9
Consistent resting-state networks across healthy subjects.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53. doi: 10.1073/pnas.0601417103. Epub 2006 Aug 31.
10
A variance components model for statistical inference on functional connectivity networks.
Neuroimage. 2017 Apr 1;149:256-266. doi: 10.1016/j.neuroimage.2017.01.051. Epub 2017 Jan 24.

引用本文的文献

2
Individual patterns of functional connectivity in neonates as revealed by surface-based Bayesian modeling.
Imaging Neurosci (Camb). 2025 Mar 20;3. doi: 10.1162/imag_a_00504. eCollection 2025.
3
5
Previous motor task performance impacts phase-based EEG resting-state connectivity states.
Imaging Neurosci (Camb). 2024 Mar 14;2. doi: 10.1162/imag_a_00109. eCollection 2024.
6
Unveiling hidden sources of dynamic functional connectome through a novel regularized blind source separation approach.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00220. eCollection 2024.
7
Challenges in the measurement and interpretation of dynamic functional connectivity.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00366. eCollection 2024.
9
Toward Granular Brain Intrinsic Connectivity Networks and Insights into Schizophrenia.
bioRxiv. 2025 Jun 11:2025.06.11.659084. doi: 10.1101/2025.06.11.659084.
10
Shared and distinct brain activation patterns of acupoints HT7, ST36, and KI4: a task-based fMRI study.
Front Neurol. 2025 Jun 26;16:1596306. doi: 10.3389/fneur.2025.1596306. eCollection 2025.

本文引用的文献

1
Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex.
J Cogn Neurosci. 1997 Fall;9(5):648-63. doi: 10.1162/jocn.1997.9.5.648.
2
Modes or models: a critique on independent component analysis for fMRI.
Trends Cogn Sci. 1998 Oct 1;2(10):373-5. doi: 10.1016/s1364-6613(98)01227-3.
3
Action sets and decisions in the medial frontal cortex.
Trends Cogn Sci. 2004 Sep;8(9):410-7. doi: 10.1016/j.tics.2004.07.009.
5
Concurrent EEG/fMRI analysis by multiway Partial Least Squares.
Neuroimage. 2004 Jul;22(3):1023-34. doi: 10.1016/j.neuroimage.2004.03.038.
6
Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42. doi: 10.1073/pnas.0308627101. Epub 2004 Mar 15.
7
Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
Neuroimage. 2004 Apr;21(4):1652-64. doi: 10.1016/j.neuroimage.2003.11.025.
8
Probabilistic independent component analysis for functional magnetic resonance imaging.
IEEE Trans Med Imaging. 2004 Feb;23(2):137-52. doi: 10.1109/TMI.2003.822821.
9
An event-related fMRI study of the neurobehavioral impact of sleep deprivation on performance of a delayed-match-to-sample task.
Brain Res Cogn Brain Res. 2004 Feb;18(3):306-21. doi: 10.1016/j.cogbrainres.2003.10.019.
10
Independent component analysis of nondeterministic fMRI signal sources.
Neuroimage. 2003 Jun;19(2 Pt 1):253-60. doi: 10.1016/s1053-8119(03)00097-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验