Beckmann Christian F, DeLuca Marilena, Devlin Joseph T, Smith Stephen M
Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13. doi: 10.1098/rstb.2005.1634.
Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific investigations into the structure of these effects. We apply PICA to fMRI data acquired at rest, in order to characterize the spatio-temporal structure of such data, and demonstrate that this is an effective and robust tool for the identification of low-frequency resting-state patterns from data acquired at various different spatial and temporal resolutions. We show that these networks exhibit high spatial consistency across subjects and closely resemble discrete cortical functional networks such as visual cortical areas or sensory-motor cortex.
从功能磁共振成像(fMRI)数据中推断静息态连接模式,对于任何分析技术而言都是一项具有挑战性的任务。在本文中,我们回顾了一种针对fMRI数据优化的概率独立成分分析(PICA)方法,并讨论了这种探索性技术在对这些效应结构的科学研究中所能发挥的作用。我们将PICA应用于静息状态下采集的fMRI数据,以表征此类数据的时空结构,并证明这是一种从以各种不同空间和时间分辨率采集的数据中识别低频静息态模式的有效且稳健的工具。我们表明,这些网络在不同个体间表现出高度的空间一致性,并且与诸如视觉皮层区域或感觉运动皮层等离散的皮层功能网络极为相似。