Suppr超能文献

时间分辨瞬时功能位点估计(TRIFLE):在功能磁共振成像中估计空间重叠源的时变分配。

Time-resolved instantaneous functional loci estimation (TRIFLE): Estimating time-varying allocation of spatially overlapping sources in functional magnetic resonance imaging.

作者信息

de Kloe Tamara Jedidja, Fazal Zahra, Kohn Nils, Norris David Gordon, Menon Ravi Shankar, Llera Alberto, Beckmann Christian Friedrich

机构信息

Donders Institute, Radboud University, Nijmegen, The Netherlands.

Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands.

出版信息

Imaging Neurosci (Camb). 2025 Jun 27;3. doi: 10.1162/IMAG.a.58. eCollection 2025.

Abstract

In functional magnetic resonance imaging, multivariate proxies of functional brain networks are commonly extracted using spatial independent component analysis. The theoretical premises of spatial overlap among functional processes and the time-varying nature of functional connectivity prompt the question of how to accurately model spatially overlapping and time-varying functional sources. Well-known functional networks have previously been shown to divide into spatially overlapping and functionally distinct subprocesses termedusing temporal independent component analysis on the time courses obtained via spatial independent component analysis. In this model, spatial and temporal modes of organisation interact through a single mixing matrix with fixed coefficients. Here, we introduce a time-resolved version termedto estimate time-varying changes in source allocation. We analytically demonstrate that the originally fixed TFM mixing matrix can be expressed as the temporal average of a time-resolved mixing matrix, which in turn can be obtained in closed form and provides instantaneous estimates of brain network reconfigurations involved in distinct temporal functional modes. We apply TRIFLE to a high-temporal resolution functional magnetic resonance imaging dataset. We demonstrate that spatial source allocation aligns with expectations based on the experimental task design and that successful and unsuccessful trials have different allocation profiles. The proposed method sheds light on the temporal evolution of brain network reconfigurations while explicitly accounting for potential neuroanatomical overlap.

摘要

在功能磁共振成像中,通常使用空间独立成分分析来提取功能性脑网络的多元代理指标。功能过程之间空间重叠的理论前提以及功能连接的时变性质引发了一个问题,即如何准确地对空间重叠和时变的功能源进行建模。先前的研究表明,通过对经空间独立成分分析得到的时间序列进行时间独立成分分析,可以将著名的功能网络划分为空间重叠但功能不同的子过程。在这个模型中,空间和时间组织模式通过一个具有固定系数的单一混合矩阵相互作用。在这里,我们引入了一个时间分辨版本,称为TRIFLE,以估计源分配的时变变化。我们通过分析证明,最初固定的TFM混合矩阵可以表示为时间分辨混合矩阵的时间平均值,而时间分辨混合矩阵又可以以封闭形式获得,并提供参与不同时间功能模式的脑网络重构的瞬时估计。我们将TRIFLE应用于一个高时间分辨率的功能磁共振成像数据集。我们证明,空间源分配与基于实验任务设计的预期一致,并且成功和不成功的试验具有不同的分配模式。所提出的方法揭示了脑网络重构的时间演变,同时明确考虑了潜在的神经解剖重叠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c215/12319831/926f1882013d/imag.a.58_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验