Campos Paulo R A, Moreira F G Brady
Departamento de Física e Matemática, Universidade Federal Rural de Pernambuco, Dois Irmãos 52171-900, Recife-Pernambuco, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061921. doi: 10.1103/PhysRevE.71.061921. Epub 2005 Jun 28.
We investigate the properties of adaptive walks on an uncorrelated fitness landscape which is established in sequence spaces of complex structure. In particular, we perform numerical simulations of adaptive walks on random graphs and scale-free networks. For the former, we also derive some analytical approximations for the density of local optima of the fitness landscape and the mean length walk. We compare our results with those obtained for regular lattices. We obtain that the density of local optima decreases as 1/z, where z is the mean connectivity, for all networks we have investigated. In random graphs, the mean length walk L reaches the asymptotic value e - 1 for large z, which corresponds to the result for regular networks. Although we could not find an exact estimate, we derive an underestimated value for L. Unlike random graphs, scale-free networks show an upper asymptotic value of L.
我们研究了在复杂结构序列空间中建立的不相关适应度景观上的适应性行走特性。特别地,我们对随机图和无标度网络上的适应性行走进行了数值模拟。对于随机图,我们还推导了适应度景观局部最优解密度和平均行走长度的一些解析近似。我们将结果与在规则晶格上得到的结果进行比较。我们发现,对于我们研究的所有网络,局部最优解密度随1/z减小,其中z是平均连通度。在随机图中,对于大的z,平均行走长度L达到渐近值e - 1,这与规则网络的结果相对应。虽然我们未能找到精确估计,但我们推导了L的一个低估值。与随机图不同,无标度网络显示出L的一个上渐近值。