Seifert Udo
II. Institut für Theoretische Physik, Universität Stuttgart, Germany.
Phys Rev Lett. 2005 Jul 22;95(4):040602. doi: 10.1103/PhysRevLett.95.040602. Epub 2005 Jul 20.
For stochastic nonequilibrium dynamics like a Langevin equation for a colloidal particle or a master equation for discrete states, entropy production along a single trajectory is studied. It involves both genuine particle entropy and entropy production in the surrounding medium. The integrated sum of both Delatas(tot) is shown to obey a fluctuation theorem (exp([-Deltas(tot) = 1 for arbitrary initial conditions and arbitrary time-dependent driving over a finite time interval.
对于诸如胶体粒子的朗之万方程或离散态的主方程之类的随机非平衡动力学,研究了沿单个轨迹的熵产生。它既涉及真正的粒子熵,也涉及周围介质中的熵产生。两者的积分总和(\Delta S_{(tot)})被证明服从涨落定理(对于任意初始条件和在有限时间间隔上任意随时间变化的驱动,(\exp([-\Delta S_{(tot)}]=1))。