Suppr超能文献

儿童语义加工中前额叶-颞叶的差异神经关联

Differential prefrontal-temporal neural correlates of semantic processing in children.

作者信息

Blumenfeld Henrike K, Booth James R, Burman Douglas D

机构信息

Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.

出版信息

Brain Lang. 2006 Dec;99(3):226-35. doi: 10.1016/j.bandl.2005.07.004. Epub 2005 Aug 10.

Abstract

This study used functional magnetic resonance imaging (fMRI) to examine brain-behavior correlations in a group of 16 children (9- to 12-year-olds). Activation was measured during a semantic judgment task presented in either the visual or auditory modality that required the individual to determine whether a final word was related in meaning to one of two previous words (e.g., found-tank-lost). The main finding was that higher performers (i.e., accuracy) were associated with more activation in posterior representational systems including the inferior and middle temporal gyri, whereas lower performers were associated with more activation in anterior regions including the inferior and middle frontal gyri. This pattern of results was interpreted as reflecting an elaborated semantic representational system in temporal areas for the high accuracy performers that allowed them to efficiently and accurately make meaning based judgments. The low accuracy performers may have an inaccurate or weakly interconnected semantic system that results in greater use of frontal areas in a feature selection process.

摘要

本研究使用功能磁共振成像(fMRI)来检查一组16名儿童(9至12岁)的脑-行为相关性。在以视觉或听觉形式呈现的语义判断任务中测量激活情况,该任务要求个体确定最后一个单词在意义上是否与前两个单词之一相关(例如,找到-坦克-丢失)。主要发现是,表现较好者(即准确率较高者)与包括颞下回和颞中回在内的后部表征系统中更多的激活相关,而表现较差者与包括额下回和额中回在内的前部区域中更多的激活相关。这种结果模式被解释为反映了高准确率者在颞叶区域有一个精细的语义表征系统,这使他们能够高效、准确地做出基于意义的判断。准确率较低者可能有一个不准确或联系较弱的语义系统,这导致他们在特征选择过程中更多地使用额叶区域。

相似文献

1
Differential prefrontal-temporal neural correlates of semantic processing in children.
Brain Lang. 2006 Dec;99(3):226-35. doi: 10.1016/j.bandl.2005.07.004. Epub 2005 Aug 10.
4
Developmental changes in the neural correlates of semantic processing.
Neuroimage. 2006 Feb 15;29(4):1141-9. doi: 10.1016/j.neuroimage.2005.09.064. Epub 2005 Nov 7.
5
Effects of representational distance between meanings on the neural correlates of semantic ambiguity.
Brain Lang. 2014 Dec;139:23-35. doi: 10.1016/j.bandl.2014.10.001. Epub 2014 Oct 23.
7
The neural areas that control the retrieval and selection of semantics.
Neuropsychologia. 2004;42(9):1269-80. doi: 10.1016/j.neuropsychologia.2003.12.014.
9
Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex.
Neuropsychologia. 2015 Sep;76:92-107. doi: 10.1016/j.neuropsychologia.2015.02.030. Epub 2015 Feb 26.
10
Developmental changes in the inferior frontal cortex for selecting semantic representations.
Dev Cogn Neurosci. 2011 Jul;1(3):338-50. doi: 10.1016/j.dcn.2011.01.005.

引用本文的文献

2
Neural Bases of Phonological and Semantic Processing in Early Childhood.
Brain Connect. 2020 Jun;10(5):212-223. doi: 10.1089/brain.2019.0728. Epub 2020 Jun 8.
3
Fronto-insular-parietal network engagement underlying arithmetic word problem solving.
Hum Brain Mapp. 2019 Apr 15;40(6):1927-1941. doi: 10.1002/hbm.24502. Epub 2018 Dec 18.
4
Neural specialization of phonological and semantic processing in young children.
Hum Brain Mapp. 2018 Nov;39(11):4334-4348. doi: 10.1002/hbm.24274. Epub 2018 Jun 28.
5
Lexical-Semantic Search Under Different Covert Verbal Fluency Tasks: An fMRI Study.
Front Behav Neurosci. 2017 Aug 8;11:131. doi: 10.3389/fnbeh.2017.00131. eCollection 2017.
6
Neural Correlates of Math Gains Vary Depending on Parental Socioeconomic Status (SES).
Front Psychol. 2016 Jun 17;7:892. doi: 10.3389/fpsyg.2016.00892. eCollection 2016.
7
Temporo-parietal connectivity uniquely predicts reading change from childhood to adolescence.
Neuroimage. 2016 Nov 15;142:126-134. doi: 10.1016/j.neuroimage.2016.06.055. Epub 2016 Jul 2.
8
The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency.
Restor Neurol Neurosci. 2015;33(6):865-82. doi: 10.3233/RNN-150533.
9
Language differences in the brain network for reading in naturalistic story reading and lexical decision.
PLoS One. 2015 May 27;10(5):e0124388. doi: 10.1371/journal.pone.0124388. eCollection 2015.

本文引用的文献

1
Positron emission tomographic studies of the processing of singe words.
J Cogn Neurosci. 1989 Spring;1(2):153-70. doi: 10.1162/jocn.1989.1.2.153.
2
Segregating Semantic from Phonological Processes during Reading.
J Cogn Neurosci. 1997 Nov;9(6):727-33. doi: 10.1162/jocn.1997.9.6.727.
4
The University of South Florida free association, rhyme, and word fragment norms.
Behav Res Methods Instrum Comput. 2004 Aug;36(3):402-7. doi: 10.3758/bf03195588.
5
Comparison of functional activation foci in children and adults using a common stereotactic space.
Neuroimage. 2003 May;19(1):16-28. doi: 10.1016/s1053-8119(03)00038-7.
8
Neural correlates for feeling-of-knowing: an fMRI parametric analysis.
Neuron. 2002 Sep 26;36(1):177-86. doi: 10.1016/s0896-6273(02)00939-x.
9
Assessment of spatial normalization of whole-brain magnetic resonance images in children.
Hum Brain Mapp. 2002 Sep;17(1):48-60. doi: 10.1002/hbm.10053.
10
Disruption of posterior brain systems for reading in children with developmental dyslexia.
Biol Psychiatry. 2002 Jul 15;52(2):101-10. doi: 10.1016/s0006-3223(02)01365-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验