Sondossi M, Sylvestre M, Ahmad D
Université du Québec, INRS-Santé, Pointe Claire, Canada.
Appl Environ Microbiol. 1992 Feb;58(2):485-95. doi: 10.1128/aem.58.2.485-495.1992.
Bacterial conversion of biphenyl (BP) and chlorobiphenyls (CBPs) to benzoates and chlorobenzoates (CBAs) proceeds by introduction of molecular oxygen at the 2,3 position, followed by a 1,2-meta cleavage of the molecule. Complete mineralization of CBPs requires the presence of two sets of genes, one for the transformation fo CBPs into CBAs and a second for the degradation of CBAs. It has been shown previously that removal of the CBAs produced from the degradation of CBPs is essential for efficient degradation of CBPs. In this study we confirmed that CBAs inhibit BP and CBP transformation in Pseudomonas testosteroni B-356. Among the three monochlorobenzoates tested, 3-chlorobenzoate was the most effective inhibitor. Furthermore, we found that in strain B-356, CBA transformation is controlled by BP-induced oxygenases that are not present in benzoate-grown cells. We found that this BP-linked CBA transformation pathway transformed CBAs produced from CBPs into several metabolites, including chlorocatechols and corresponding muconic semialdehydes. These metabolites inhibited the 2,3-dihydroxybiphenyl 1,2-dioxygenase, while CBAs by themselves had no effect on this enzyme. Therefore, on the basis of this and other observations, it appears that when CBAs produced from CBPs accumulate in the growth medium, they are converted into unproductive metabolites that reduce the flux of the BP and CBP degradation pathway. The practical implications of these interactions on the microbial degradation of polychlorinated BPs are also discussed.
联苯(BP)和氯代联苯(CBPs)通过在2,3位引入分子氧,随后分子进行1,2-间位裂解,被细菌转化为苯甲酸盐和氯代苯甲酸盐(CBAs)。CBPs的完全矿化需要两组基因的存在,一组用于将CBPs转化为CBAs,另一组用于降解CBAs。先前已经表明,去除CBPs降解产生的CBAs对于CBPs的有效降解至关重要。在本研究中,我们证实CBAs抑制睾丸酮假单胞菌B-356中BP和CBP的转化。在所测试的三种单氯代苯甲酸盐中,3-氯代苯甲酸盐是最有效的抑制剂。此外,我们发现,在菌株B-356中,CBA的转化由BP诱导的加氧酶控制,而在以苯甲酸盐为生长底物的细胞中不存在这种加氧酶。我们发现,这条与BP相关的CBA转化途径将CBPs产生的CBAs转化为几种代谢产物,包括氯代儿茶酚和相应的粘康半醛。这些代谢产物抑制2,3-二羟基联苯1,2-双加氧酶,而CBAs本身对该酶没有影响。因此,基于这一观察结果和其他观察结果,似乎当CBPs产生的CBAs在生长培养基中积累时,它们会转化为非生产性代谢产物,从而减少BP和CBP降解途径的通量。还讨论了这些相互作用对多氯联苯微生物降解的实际影响。