Desvaux Mickaël
Institute for Biomedical Research, The University of Birmingham - The Medical School, Edgbaston, UK.
FEMS Microbiol Rev. 2005 Sep;29(4):741-64. doi: 10.1016/j.femsre.2004.11.003. Epub 2004 Dec 1.
Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon consumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellodextrin, and with pure cellulose, as a carbon source more closely related to lignocellulosic compounds, strengthen the idea of a bacterium particularly well adapted, and even restricted, to a cellulolytic lifestyle. The metabolic flux analysis from continuous cultures revealed that (i) in comparison to cellobiose, the cellulose hydrolysis by the cellulosome introduces an extra regulation of entering carbon flow resulting in globally lower metabolic fluxes on cellulose than on cellobiose, (ii) the glucose 1-phosphate/glucose 6-phosphate branch point controls the carbon flow directed towards glycolysis and dissipates carbon excess towards the formation of cellodextrins, glycogen and exopolysaccharides, (iii) the pyruvate/acetyl-CoA metabolic node is essential to the regulation of electronic and energetic fluxes. This in-depth analysis of C. cellulolyticum metabolism has permitted the first attempt to engineer metabolically a cellulolytic microorganism.
解纤维素梭菌ATCC 35319是一种非瘤胃嗜温性纤维素分解细菌,最初从腐烂的草中分离得到。与大多数真正的纤维素分解梭菌一样,解纤维素梭菌拥有一种细胞外多酶复合物——纤维小体。纤维小体的催化成分从纤维素中释放出可溶性纤维寡糖,为细菌生长提供主要的碳底物。与大多数纤维素分解细菌一样,与其他糖分解梭菌相比,解纤维素梭菌最初的特征是碳消耗有限,随后生长受限。在分批培养中进行的首次代谢研究表明,营养物质限制和/或副产物抑制是这种生长受限的原因。在最近使用恒化器培养的研究中,代谢通量分析表明,由于碳流调节效率低下,细菌代谢存在自我中毒现象。以纤维二糖作为可溶性纤维糊精的模型,以纯纤维素作为与木质纤维素化合物更密切相关的碳源,对解纤维素梭菌生理学进行的研究强化了这样一种观点,即该细菌特别适应甚至局限于纤维素分解的生活方式。连续培养的代谢通量分析表明:(i)与纤维二糖相比,纤维小体对纤维素的水解引入了对进入碳流的额外调节,导致纤维素上的总体代谢通量低于纤维二糖;(ii)葡萄糖-1-磷酸/葡萄糖-6-磷酸分支点控制着导向糖酵解的碳流,并将过量的碳用于形成纤维糊精、糖原和胞外多糖;(iii)丙酮酸/乙酰辅酶A代谢节点对电子和能量通量的调节至关重要。对解纤维素梭菌代谢的这种深入分析首次尝试对纤维素分解微生物进行代谢工程改造。