Muthuswamy Jit, Okandan Murat, Gilletti Aaron, Baker Michael S, Jain Tilak
Harrington Department of Bioengineering, ECG 334, P.O. Box 879709, Arizona State University, Tempe, AZ 85287-9709, USA.
IEEE Trans Biomed Eng. 2005 Aug;52(8):1470-7. doi: 10.1109/TBME.2005.851478.
Arrays of microelectrodes used for monitoring single- and multi-neuronal action potentials often fail to record from the same population of neurons over a period of time for several technical and biological reasons. We report here a novel Neural Probe chip with a 3-channel microactuated microelectrode array that will enable precise repositioning of the individual microelectrodes within the brain tissue after implantation. Thermal microactuators and associated microelectrodes in the Neural Probe chip are microfabricated using the Sandia's Ultraplanar Multi-level MEMS Technology (SUMMiTV) process, a 5-layer polysilicon micromachining technology of the Sandia National labs, Albuquerque, NM. The Neural Probe chip enables precise bi-directional positioning of the microelectrodes in the brain with a step resolution in the order of 8.8 microm. The thermal microactuators allow for a linear translation of the microelectrodes of up to 5 mm in either direction making it suitable for positioning microelectrodes in deep structures of a rodent brain. The overall translation in either direction was reduced to approximately 2 mm after insulation of the microelectrodes with epoxy for monitoring multi-unit activity. Single unit recordings were obtained from the somatosensory cortex of adult rats over a period of three days demonstrating the feasibility of this technology. Further optimization of the microelectrode insulation and chip packaging will be necessary before this technology can be validated in chronic experiments.
由于多种技术和生物学原因,用于监测单个和多个神经元动作电位的微电极阵列常常无法在一段时间内从同一群神经元进行记录。我们在此报告一种新型神经探针芯片,它带有一个3通道微驱动微电极阵列,能够在植入后在脑组织内精确重新定位各个微电极。神经探针芯片中的热微驱动器和相关微电极采用桑迪亚国家实验室(位于新墨西哥州阿尔伯克基)的超平面多层微机电系统技术(SUMMiTV)工艺进行微制造,这是一种5层多晶硅微加工技术。神经探针芯片能够在大脑中对微电极进行精确的双向定位,步长分辨率约为8.8微米。热微驱动器允许微电极在任一方向上进行高达5毫米的线性平移,使其适用于在啮齿动物大脑的深部结构中定位微电极。在用环氧树脂对微电极进行绝缘以监测多单元活动后,任一方向上的总平移量减少到约2毫米。在三天的时间里从成年大鼠的体感皮层获得了单单元记录,证明了该技术的可行性。在该技术能够在慢性实验中得到验证之前,有必要对微电极绝缘和芯片封装进行进一步优化。