Suppr超能文献

用于监测啮齿动物单神经元活动的微驱动微电极阵列。

An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents.

作者信息

Muthuswamy Jit, Okandan Murat, Gilletti Aaron, Baker Michael S, Jain Tilak

机构信息

Harrington Department of Bioengineering, ECG 334, P.O. Box 879709, Arizona State University, Tempe, AZ 85287-9709, USA.

出版信息

IEEE Trans Biomed Eng. 2005 Aug;52(8):1470-7. doi: 10.1109/TBME.2005.851478.

Abstract

Arrays of microelectrodes used for monitoring single- and multi-neuronal action potentials often fail to record from the same population of neurons over a period of time for several technical and biological reasons. We report here a novel Neural Probe chip with a 3-channel microactuated microelectrode array that will enable precise repositioning of the individual microelectrodes within the brain tissue after implantation. Thermal microactuators and associated microelectrodes in the Neural Probe chip are microfabricated using the Sandia's Ultraplanar Multi-level MEMS Technology (SUMMiTV) process, a 5-layer polysilicon micromachining technology of the Sandia National labs, Albuquerque, NM. The Neural Probe chip enables precise bi-directional positioning of the microelectrodes in the brain with a step resolution in the order of 8.8 microm. The thermal microactuators allow for a linear translation of the microelectrodes of up to 5 mm in either direction making it suitable for positioning microelectrodes in deep structures of a rodent brain. The overall translation in either direction was reduced to approximately 2 mm after insulation of the microelectrodes with epoxy for monitoring multi-unit activity. Single unit recordings were obtained from the somatosensory cortex of adult rats over a period of three days demonstrating the feasibility of this technology. Further optimization of the microelectrode insulation and chip packaging will be necessary before this technology can be validated in chronic experiments.

摘要

由于多种技术和生物学原因,用于监测单个和多个神经元动作电位的微电极阵列常常无法在一段时间内从同一群神经元进行记录。我们在此报告一种新型神经探针芯片,它带有一个3通道微驱动微电极阵列,能够在植入后在脑组织内精确重新定位各个微电极。神经探针芯片中的热微驱动器和相关微电极采用桑迪亚国家实验室(位于新墨西哥州阿尔伯克基)的超平面多层微机电系统技术(SUMMiTV)工艺进行微制造,这是一种5层多晶硅微加工技术。神经探针芯片能够在大脑中对微电极进行精确的双向定位,步长分辨率约为8.8微米。热微驱动器允许微电极在任一方向上进行高达5毫米的线性平移,使其适用于在啮齿动物大脑的深部结构中定位微电极。在用环氧树脂对微电极进行绝缘以监测多单元活动后,任一方向上的总平移量减少到约2毫米。在三天的时间里从成年大鼠的体感皮层获得了单单元记录,证明了该技术的可行性。在该技术能够在慢性实验中得到验证之前,有必要对微电极绝缘和芯片封装进行进一步优化。

相似文献

7

引用本文的文献

本文引用的文献

5
How much work is required to puncture dura with Tuohy needles?
Br J Anaesth. 2000 Aug;85(2):238-41. doi: 10.1093/bja/85.2.238.
6
Measurement of the force required to move a neurosurgical probe through in vivo human brain tissue.
IEEE Trans Biomed Eng. 1999 Jul;46(7):891-4. doi: 10.1109/10.771205.
7
Dynamics of the hippocampal ensemble code for space.海马体空间集合编码的动力学
Science. 1993 Aug 20;261(5124):1055-8. doi: 10.1126/science.8351520.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验