Simões S I, Tapadas J M, Marques C M, Cruz M E M, Martins M B F, Cevc G
INETI, Departamento de Biotecnologia, UNFAB, Estada do Paço do Lumiar, 22, Edifício F, 1649-038 Lisboa, Portugal.
Eur J Pharm Sci. 2005 Nov;26(3-4):307-17. doi: 10.1016/j.ejps.2005.07.002.
To understand better the wide-spread pharmaceutical use of non-ionic surfactant Tween 80 (TW), the colloidal properties of the surfactant alone and in combinations with the common phospholipid, phosphatidylcholine (PC), were studied. Static and dynamic light scattering revealed that TW solubilises PC at TW/PC approximately 2.75/1 mol/mol and that TW micelle disintegration occurs on time-scale of 2.5 min, independent of amphipath concentration. This is up to nearly 300-times faster than the TW caused dissolution of PC containing unilamellar vesicles. The apparent dissolution time of TW/PC mixed aggregates, in contrast, decelerates from >700 min to <5 min upon increasing starting total amphipath concentration, with thermal activation energy > or =24 (< or =80) kJ mol(-1). The aggregate dissolution rate in highly concentrated TW/PC suspensions reflects the dissolved polysorbate-aggregate exchange rate (approximately 6.7 x 10(-3)s(-1)) rather than TW flip-flop rate across a bilayer (>0.2 min(-1)). PC solubilisation proceeds linearly with the square-root of time, and is kinetically governed by the speed of surfactant diffusion through the bulk (D approximately 2.8 x 10(-11)m2 s(-1)). Creation of small Tween-phosphatidylcholine mixed micelles is typically preceded by pre-solubilisation structures, first in the form of deformable, strongly fluctuating, bilayer vesicles and then of elongated, presumably thread-like, mixed micelles. TW/PC mixed micelles become smaller with growing surfactant/lipid molar ratio, whereas TW/PC mixed vesicles become more and more leaky with increasing surfactant concentration. Our results highlight the molecular and kinetic aspects of polysorbate-membrane interactions and provide a rationale for the popularity of Tween surfactants in pharmaceutical products: such surfactants can solubilise fatty molecules and bilayer membranes but need quite a long time for this, which is available in pharmaceutical preparations but normally not in vivo; this makes Tweens relatively efficient and safe. Furthermore, our data could help design better ultra-deformable mixed lipid-surfactant vesicles for the non-invasive transdermal drug delivery across the skin.
为了更好地理解非离子表面活性剂吐温80(TW)在制药领域的广泛应用,我们研究了该表面活性剂单独存在以及与常见磷脂磷脂酰胆碱(PC)组合时的胶体性质。静态和动态光散射表明,TW在TW/PC摩尔比约为2.75/1时可溶解PC,且TW胶束的分解在2.5分钟的时间尺度上发生,与两亲物浓度无关。这比TW导致的含单层囊泡的PC溶解速度快近300倍。相比之下,随着起始总两亲物浓度的增加,TW/PC混合聚集体的表观溶解时间从>700分钟减慢至<5分钟,热活化能>或=24(<或=80)kJ mol⁻¹。高浓度TW/PC悬浮液中的聚集体溶解速率反映的是溶解的聚山梨酯 - 聚集体交换速率(约6.7×10⁻³ s⁻¹),而不是TW跨双层的翻转速率(>0.2 min⁻¹)。PC的溶解随时间的平方根呈线性进行,并且在动力学上受表面活性剂通过本体扩散的速度控制(D约为2.8×10⁻¹¹ m² s⁻¹)。小的吐温 - 磷脂酰胆碱混合胶束的形成通常之前会有预溶解结构,首先是可变形的、强烈波动的双层囊泡形式,然后是细长的、可能呈线状的混合胶束。随着表面活性剂/脂质摩尔比的增加,TW/PC混合胶束变小,而随着表面活性剂浓度的增加,TW/PC混合囊泡变得越来越渗漏。我们的结果突出了聚山梨酯 - 膜相互作用的分子和动力学方面,并为吐温表面活性剂在药品中的广泛应用提供了理论依据:此类表面活性剂可以溶解脂肪分子和双层膜,但这需要相当长的时间,而这在药物制剂中是可行的,但在体内通常不可行;这使得吐温相对高效且安全。此外,我们的数据有助于设计更好的超可变形混合脂质 - 表面活性剂囊泡,用于通过皮肤的非侵入性透皮给药。