Chen Chyong-Mei, Yu Chang-Yung
Department of Statistics and Informatics Science, Providence University, Taichung, Taiwan, ROC.
Lifetime Data Anal. 2012 Jan;18(1):94-115. doi: 10.1007/s10985-011-9205-1. Epub 2011 Oct 9.
This paper considers the analysis of multivariate survival data where the marginal distributions are specified by semiparametric transformation models, a general class including the Cox model and the proportional odds model as special cases. First, consideration is given to the situation where the joint distribution of all failure times within the same cluster is specified by the Clayton-Oakes model (Clayton, Biometrika 65:141-151, l978; Oakes, J R Stat Soc B 44:412-422, 1982). A two-stage estimation procedure is adopted by first estimating the marginal parameters under the independence working assumption, and then the association parameter is estimated from the maximization of the full likelihood function with the estimators of the marginal parameters plugged in. The asymptotic properties of all estimators in the semiparametric model are derived. For the second situation, the third and higher order dependency structures are left unspecified, and interest focuses on the pairwise correlation between any two failure times. Thus, the pairwise association estimate can be obtained in the second stage by maximizing the pairwise likelihood function. Large sample properties for the pairwise association are also derived. Simulation studies show that the proposed approach is appropriate for practical use. To illustrate, a subset of the data from the Diabetic Retinopathy Study is used.
本文考虑对多变量生存数据进行分析,其中边际分布由半参数变换模型指定,这是一个广义类别,Cox模型和比例优势模型作为特殊情况包含在内。首先,考虑同一聚类内所有失效时间的联合分布由Clayton - Oakes模型指定的情况(Clayton,《生物计量学》65:141 - 151,1978;Oakes,《皇家统计学会会刊B辑》44:412 - 422,1982)。采用两阶段估计程序,首先在独立工作假设下估计边际参数,然后将边际参数的估计值代入全似然函数的最大化中估计关联参数。推导了半参数模型中所有估计量的渐近性质。对于第二种情况,未指定三阶及更高阶的依赖结构,关注点在于任意两个失效时间之间的成对相关性。因此,在第二阶段通过最大化成对似然函数可获得成对关联估计值。还推导了成对关联的大样本性质。模拟研究表明所提出的方法适用于实际应用。为作说明,使用了糖尿病视网膜病变研究数据的一个子集。