Suppr超能文献

超螺旋结构域的组织及其通过转录进行的重组。

Organization of supercoil domains and their reorganization by transcription.

作者信息

Deng Shuang, Stein Richard A, Higgins N Patrick

机构信息

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL-35294, USA.

出版信息

Mol Microbiol. 2005 Sep;57(6):1511-21. doi: 10.1111/j.1365-2958.2005.04796.x.

Abstract

During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems.

摘要

在正常细胞周期中,染色体要经历许多需要特定类型DNA移动的生化反应。在细胞分裂过程中,分离力将复制后的染色体移动到不同的子细胞区室中,同时,DNA复制、RNA转录以及膜蛋白的共转录翻译等过程会使DNA的特定区域发生扭曲、缠绕以及伸展或收缩。最近的实验表明,一种动态随机机制在DNA复制后不久就会产生超螺旋DNA结构域。随后,RNA转录会对结构域结构进行重新组织。真核细胞系统中也不断出现转录依赖性染色体重塑的例子。

相似文献

1
Organization of supercoil domains and their reorganization by transcription.
Mol Microbiol. 2005 Sep;57(6):1511-21. doi: 10.1111/j.1365-2958.2005.04796.x.
2
Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3398-403. doi: 10.1073/pnas.0307550101. Epub 2004 Mar 1.
3
Measuring In Vivo Supercoil Dynamics and Transcription Elongation Rates in Bacterial Chromosomes.
Methods Mol Biol. 2017;1624:17-27. doi: 10.1007/978-1-4939-7098-8_2.
4
DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium.
Mol Microbiol. 2010 Dec;78(6):1348-64. doi: 10.1111/j.1365-2958.2010.07394.x. Epub 2010 Sep 30.
5
DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins.
Biochimie. 2010 Dec;92(12):1715-21. doi: 10.1016/j.biochi.2010.06.024. Epub 2010 Jul 6.
6
Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces?
FEMS Microbiol Lett. 1995 Sep 15;131(3):235-42. doi: 10.1111/j.1574-6968.1995.tb07782.x.
7
High-resolution mapping of the spatial organization of a bacterial chromosome.
Science. 2013 Nov 8;342(6159):731-4. doi: 10.1126/science.1242059. Epub 2013 Oct 24.
8
Partitioning of the Escherichia coli chromosome: superhelicity and condensation.
Biochimie. 2001 Jan;83(1):41-8. doi: 10.1016/s0300-9084(00)01204-9.
9
RNA polymerase: chromosome domain boundary maker and regulator of supercoil density.
Curr Opin Microbiol. 2014 Dec;22:138-43. doi: 10.1016/j.mib.2014.10.002.

引用本文的文献

1
Transcribing RNA polymerases: Dynamics of twin supercoiled domains.
Biophys J. 2024 Nov 19;123(22):3898-3910. doi: 10.1016/j.bpj.2024.10.002. Epub 2024 Oct 4.
2
Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma.
J Bacteriol. 2024 Mar 21;206(3):e0021123. doi: 10.1128/jb.00211-23. Epub 2024 Feb 15.
3
DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling.
Front Microbiol. 2023 Oct 30;14:1192831. doi: 10.3389/fmicb.2023.1192831. eCollection 2023.
4
Synthetic lethal mutants in define pathways necessary for survival with RNase H deficiency.
J Bacteriol. 2023 Oct 26;205(10):e0028023. doi: 10.1128/jb.00280-23. Epub 2023 Oct 11.
5
Catastrophic chromosome fragmentation probes the nucleoid structure and dynamics in Escherichia coli.
Nucleic Acids Res. 2022 Oct 28;50(19):11013-11027. doi: 10.1093/nar/gkac865.
6
Extended sister-chromosome catenation leads to massive reorganization of the E. coli genome.
Nucleic Acids Res. 2022 Mar 21;50(5):2635-2650. doi: 10.1093/nar/gkac105.
7
Distinct heterochromatin-like domains promote transcriptional memory and silence parasitic genetic elements in bacteria.
EMBO J. 2022 Feb 1;41(3):e108708. doi: 10.15252/embj.2021108708. Epub 2021 Dec 28.
8
Special Issue: Role of Bacterial Chromatin in Environmental Sensing, Adaptation and Evolution.
Microorganisms. 2021 Nov 22;9(11):2406. doi: 10.3390/microorganisms9112406.
9
Requirements for DNA-Bridging Proteins to Act as Topological Barriers of the Bacterial Genome.
Biophys J. 2020 Sep 15;119(6):1215-1225. doi: 10.1016/j.bpj.2020.08.004. Epub 2020 Aug 12.
10
Architecture of the Escherichia coli nucleoid.
PLoS Genet. 2019 Dec 12;15(12):e1008456. doi: 10.1371/journal.pgen.1008456. eCollection 2019 Dec.

本文引用的文献

1
ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON.
Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553-66. doi: 10.1073/pnas.43.7.553.
2
Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli.
Genes Dev. 2005 Oct 1;19(19):2367-77. doi: 10.1101/gad.345305.
3
4
Measuring chromosome dynamics on different time scales using resolvases with varying half-lives.
Mol Microbiol. 2005 May;56(4):1049-61. doi: 10.1111/j.1365-2958.2005.04588.x.
5
Gene regulation at the single-cell level.
Science. 2005 Mar 25;307(5717):1962-5. doi: 10.1126/science.1106914.
6
Transcriptional activation triggers deposition and removal of the histone variant H3.3.
Genes Dev. 2005 Apr 1;19(7):804-14. doi: 10.1101/gad.1259805. Epub 2005 Mar 17.
7
MreB actin-mediated segregation of a specific region of a bacterial chromosome.
Cell. 2005 Feb 11;120(3):329-41. doi: 10.1016/j.cell.2005.01.007.
8
DNA supercoiling - a global transcriptional regulator for enterobacterial growth?
Nat Rev Microbiol. 2005 Feb;3(2):157-69. doi: 10.1038/nrmicro1088.
9
Sequence-directed DNA translocation by purified FtsK.
Science. 2005 Jan 28;307(5709):586-90. doi: 10.1126/science.1104885.
10
Mechanism of hsp70i gene bookmarking.
Science. 2005 Jan 21;307(5708):421-3. doi: 10.1126/science.1106478.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验