Gloveli Tengis, Dugladze Tamar, Rotstein Horacio G, Traub Roger D, Monyer Hannah, Heinemann Uwe, Whittington Miles A, Kopell Nancy J
Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13295-300. doi: 10.1073/pnas.0506259102. Epub 2005 Sep 2.
As a structure involved in learning and memory, the hippocampus functions as a network. The functional differentiation along the longitudinal axis of the hippocampus is poorly demarcated in comparison with the transverse axis. Using patch clamp recordings in conjunction with post hoc anatomy, we have examined the pattern of connectivity and the functional differentiation along the long axis of the hippocampus. Here, we provide anatomical and physiological evidence that the prominent rhythmic network activities of the hippocampus, the behavior-specific gamma and theta oscillations, are seen predominantly along the transverse and longitudinal axes respectively. This orthogonal relationship is the result of the axonal field trajectories and the consequential interaction of the principal cells and major interneuron subtypes involved in generating each rhythm. Thus, the axonal arborization patterns of hippocampal inhibitory cells may represent a structural framework for the spatiotemporal distribution of activity observed within the hippocampus.
作为参与学习和记忆的结构,海马体以网络形式发挥功能。与横轴相比,海马体纵轴上的功能分化界限不清。我们结合事后解剖使用膜片钳记录技术,研究了海马体长轴上的连接模式和功能分化。在此,我们提供了解剖学和生理学证据,表明海马体突出的节律性网络活动,即行为特异性γ和θ振荡,分别主要出现在横轴和纵轴上。这种正交关系是轴突场轨迹以及产生每种节律所涉及的主要细胞和主要中间神经元亚型之间相互作用的结果。因此,海马体抑制性细胞的轴突分支模式可能代表了海马体内观察到的活动时空分布的结构框架。