Prasad Kalika, Parameswaran Sriram, Vijayraghavan Usha
Department of MCB, Indian Institute of Science, Bangalore 560012, India.
Plant J. 2005 Sep;43(6):915-28. doi: 10.1111/j.1365-313X.2005.02504.x.
Grass flowers are highly derived compared to their eudicot counterparts. To delineate OsMADS1 functions in rice floret organ development we have examined its evolution and the consequences of its knockdown or overexpression. Molecular phylogeny suggests the co-evolution of OsMADS1 with grass family diversification. OsMADS1 knockdown perturbs the differentiation of specific cell types in the lemma and palea, creating glume-like features, with severe derangements in lemma differentiation. Conversely, ectopic OsMADS1 expression suffices to direct lemma-like differentiation in the glume. Strikingly, in many OsMADS1 knockdown florets glume-like organs occupy all the inner whorls. Such effects in the second and third whorl are unexplained, as wild-type florets do not express OsMADS1 in these primordia and because transcripts for rice B and C organ-identity genes are unaffected by OsMADS1 knockdown. Through a screen for OsMADS1 targets we identify a flower-specific Nt-gh3 type gene, OsMGH3, as a downstream gene. The delayed transcription activation of OsMGH3 by dexamethasone-inducible OsMADS1 suggests indirect activation. The OsMGH3 floret expression profile suggests a novel role for OsMADS1 as an early-acting regulator of second and third whorl organ fate. We thus demonstrate the differential contribution of OsMADS1 for lemma versus palea development and provide evidence for its regulatory function in patterning inner whorl organs.
与双子叶植物的花相比,禾本科植物的花高度特化。为了阐明水稻小花器官发育过程中OsMADS1的功能,我们研究了它的进化以及敲低或过表达它的后果。分子系统发育表明OsMADS1与禾本科植物多样化共同进化。敲低OsMADS1会扰乱外稃和内稃中特定细胞类型的分化,产生类似颖片的特征,外稃分化严重紊乱。相反,异位表达OsMADS1足以在外稃中引导类似外稃的分化。令人惊讶的是,在许多敲低OsMADS1的小花中,类似颖片的器官占据了所有内轮。第二和第三轮的这种效应无法解释,因为野生型小花在这些原基中不表达OsMADS1,并且水稻B类和C类器官特征基因的转录本不受OsMADS1敲低的影响。通过筛选OsMADS1的靶标,我们鉴定出一个花特异性的Nt-gh3类型基因OsMGH3作为下游基因。地塞米松诱导的OsMADS1对OsMGH3的转录激活延迟表明是间接激活。OsMGH3在小花中的表达谱表明OsMADS1作为第二和第三轮器官命运的早期作用调节因子具有新的作用。因此,我们证明了OsMADS1在外稃与内稃发育中的不同作用,并为其在内轮器官模式形成中的调节功能提供了证据。