Suppr超能文献

利用住院诊断和门诊药房数据测量人群健康风险。

Measuring population health risks using inpatient diagnoses and outpatient pharmacy data.

作者信息

Zhao Y, Ellis R P, Ash A S, Calabrese D, Ayanian J Z, Slaughter J P, Weyuker L, Bowen B

机构信息

DxCG Inc., Boston, MA 02111, USA.

出版信息

Health Serv Res. 2001 Dec;36(6 Pt 2):180-93.

Abstract

OBJECTIVE

To examine and evaluate models that use inpatient encounter data and outpatient pharmacy claims data to predict future health care expenditures.

DATA SOURCES/STUDY DESIGN: The study group was the privately insured under-65 population in the 1997 and 1998 MEDSTAT Market Scan (R) Research Database. Pharmacy and disease profiles, created from pharmacy claims and inpatient encounter data, respectively, were used separately and in combination to predict each individual's subsequent-year health care expenditures.

PRINCIPAL FINDINGS

The inpatient-diagnosis model predicts well for the low-hospitalization under-65 populations, explaining 8.4 percent of future individual total cost variation. The pharmacy-based and in patient-diagnosis models perform comparably overall, with pharmacy data better able to split off a group of truly low-cost people and inpatient diagnoses better able to find a small group with extremely high future costs. The model th at uses both kinds of data performed significantly better than either model alone, with an R2 value of 11.8 percent .

CONCLUSIONS

Comprehensive pharmacy and inpatient diagnosis classification systems are each helpful for discriminating among people according to their expected costs. Properly organized and in combination these data are promising predictors of future costs.

摘要

目的

检验和评估利用住院病历数据及门诊药房报销数据来预测未来医疗保健支出的模型。

数据来源/研究设计:研究组为1997年和1998年MEDSTAT市场扫描(R)研究数据库中65岁以下的私人保险人群。分别从药房报销数据和住院病历数据中创建的药房和疾病档案,被单独使用以及结合起来使用,以预测每个人次年的医疗保健支出。

主要发现

住院诊断模型对65岁以下低住院率人群预测效果良好,可解释未来个人总成本变化的8.4%。基于药房数据的模型和住院诊断模型总体表现相当,药房数据更能区分出一组真正低成本的人群,而住院诊断更能找出一小群未来成本极高的人群。同时使用这两类数据的模型表现明显优于单独使用任一模型,其R2值为11.8%。

结论

综合药房和住院诊断分类系统有助于根据预期成本对人群进行区分。这些数据经过合理组织并结合起来,有望成为未来成本的预测指标。

相似文献

引用本文的文献

1
Pharmacy cost groups for the German morbidity-based risk compensation scheme.
Eur J Health Econ. 2025 Jul 8. doi: 10.1007/s10198-025-01809-z.
2
AI in Healthcare: Time-Series Forecasting Using Statistical, Neural, and Ensemble Architectures.
Front Big Data. 2020 Mar 19;3:4. doi: 10.3389/fdata.2020.00004. eCollection 2020.
3
Prediction of health care expenditure increase: how does pharmacotherapy contribute?
BMC Health Serv Res. 2019 Dec 11;19(1):953. doi: 10.1186/s12913-019-4616-x.
5
A Review on Methods of Risk Adjustment and their Use in Integrated Healthcare Systems.
Int J Integr Care. 2016 Oct 26;16(4):4. doi: 10.5334/ijic.2500.
6
Overpaying morbidity adjusters in risk equalization models.
Eur J Health Econ. 2016 Sep;17(7):885-95. doi: 10.1007/s10198-015-0729-2. Epub 2015 Sep 29.
7
Using "big data" to capture overall health status: properties and predictive value of a claims-based health risk score.
PLoS One. 2015 May 7;10(5):e0126054. doi: 10.1371/journal.pone.0126054. eCollection 2015.
8
Adiponectin May Modify the Risk of Barrett's Esophagus in Patients With Gastroesophageal Reflux Disease.
Clin Gastroenterol Hepatol. 2015 Dec;13(13):2256-64.e1-3. doi: 10.1016/j.cgh.2015.01.009. Epub 2015 Jan 26.
9
Pharmaceutical cost management in an ambulatory setting using a risk adjustment tool.
BMC Health Serv Res. 2014 Oct 21;14:462. doi: 10.1186/1472-6963-14-462.
10
Aspirin and nonsteroidal anti-inflammatory drug use and the risk of Barrett's esophagus.
Dig Dis Sci. 2015 Feb;60(2):436-43. doi: 10.1007/s10620-014-3349-2. Epub 2014 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验