Zhao Y, Ellis R P, Ash A S, Calabrese D, Ayanian J Z, Slaughter J P, Weyuker L, Bowen B
DxCG Inc., Boston, MA 02111, USA.
Health Serv Res. 2001 Dec;36(6 Pt 2):180-93.
To examine and evaluate models that use inpatient encounter data and outpatient pharmacy claims data to predict future health care expenditures.
DATA SOURCES/STUDY DESIGN: The study group was the privately insured under-65 population in the 1997 and 1998 MEDSTAT Market Scan (R) Research Database. Pharmacy and disease profiles, created from pharmacy claims and inpatient encounter data, respectively, were used separately and in combination to predict each individual's subsequent-year health care expenditures.
The inpatient-diagnosis model predicts well for the low-hospitalization under-65 populations, explaining 8.4 percent of future individual total cost variation. The pharmacy-based and in patient-diagnosis models perform comparably overall, with pharmacy data better able to split off a group of truly low-cost people and inpatient diagnoses better able to find a small group with extremely high future costs. The model th at uses both kinds of data performed significantly better than either model alone, with an R2 value of 11.8 percent .
Comprehensive pharmacy and inpatient diagnosis classification systems are each helpful for discriminating among people according to their expected costs. Properly organized and in combination these data are promising predictors of future costs.
检验和评估利用住院病历数据及门诊药房报销数据来预测未来医疗保健支出的模型。
数据来源/研究设计:研究组为1997年和1998年MEDSTAT市场扫描(R)研究数据库中65岁以下的私人保险人群。分别从药房报销数据和住院病历数据中创建的药房和疾病档案,被单独使用以及结合起来使用,以预测每个人次年的医疗保健支出。
住院诊断模型对65岁以下低住院率人群预测效果良好,可解释未来个人总成本变化的8.4%。基于药房数据的模型和住院诊断模型总体表现相当,药房数据更能区分出一组真正低成本的人群,而住院诊断更能找出一小群未来成本极高的人群。同时使用这两类数据的模型表现明显优于单独使用任一模型,其R2值为11.8%。
综合药房和住院诊断分类系统有助于根据预期成本对人群进行区分。这些数据经过合理组织并结合起来,有望成为未来成本的预测指标。