Fu Aihua, Gu Weiwei, Larabell Carolyn, Alivisatos A Paul
Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Curr Opin Neurobiol. 2005 Oct;15(5):568-75. doi: 10.1016/j.conb.2005.08.004.
Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission spectra. Semiconductor nanocrystals, however, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in the generation of bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.
传统有机荧光团存在光稳定性差、吸收光谱窄和发射光谱宽的问题。然而,半导体纳米晶体具有高光稳定性、宽吸收光谱和窄的尺寸可调发射光谱。这些材料合成方面的最新进展已产生了明亮、灵敏、极具光稳定性且生物相容性良好的半导体荧光团。其商业可得性促进了它们在各种前所未有的生物学实验中的应用,包括多重细胞成像、长期体外和体内标记、深部组织结构绘图以及动态细胞过程的单粒子研究。半导体纳米晶体是实现新型生物医学应用的纳米技术首批实例之一。