Suppr超能文献

单物种和多物种不饱和生物膜中的细胞外DNA

Extracellular DNA in single- and multiple-species unsaturated biofilms.

作者信息

Steinberger R E, Holden P A

机构信息

Donald Bren School of Environmental Science and Management, University of California-Santa Barbara, Bren Hall, Santa Barbara, CA 93106-5131, USA.

出版信息

Appl Environ Microbiol. 2005 Sep;71(9):5404-10. doi: 10.1128/AEM.71.9.5404-5410.2005.

Abstract

The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.

摘要

细菌生物膜的胞外聚合物(EPS)在细胞与其外部环境之间形成了一层水合屏障。对EPS进行更深入的表征有助于理解生物膜生理学。EPS的化学组成复杂,会随细菌菌株和培养条件的变化而改变。此前,我们报道过铜绿假单胞菌不饱和生物膜EPS中含有大量胞外DNA(eDNA)(R.E.斯坦伯格、A.R.艾伦、H.G.汉斯马和P.A.霍尔登,《微生物生态学》43:416 - 423,2002年)。在此,我们研究了多物种生物膜中eDNA与细胞DNA的组成相似性、eDNA的相对数量以及eDNA的末端限制性片段长度多态性(TRFLP)群落图谱。通过随机扩增多态性DNA分析,铜绿假单胞菌生物膜的细胞DNA和eDNA看起来是相同的。在铜绿假单胞菌和恶臭假单胞菌生物膜中产生的eDNA明显多于红球菌或奇异贪铜菌生物膜。虽然双物种生物膜中eDNA的量与单物种生物膜中的量处于同一数量级,但无法根据单菌株测量结果预测其数量。通过对16S rRNA基因产生的TRFLP图谱进行香农多样性指数和主成分分析,四物种生物膜的eDNA与同一生物膜的细胞DNA或总DNA有显著差异。然而,基于该生物膜群落的总DNA和细胞DNA的TRFLP分析得出了相同的结果。我们得出结论,不饱和生物膜中胞外DNA的产生具有物种依赖性,并且该DNA库中包含的系统发育信息是可量化的,且与总DNA或细胞DNA不同。

相似文献

1
Extracellular DNA in single- and multiple-species unsaturated biofilms.
Appl Environ Microbiol. 2005 Sep;71(9):5404-10. doi: 10.1128/AEM.71.9.5404-5410.2005.
2
Interaction between copper and extracellular nucleic acids in the EPS of unsaturated Pseudomonas putida CZ1 biofilm.
Environ Sci Pollut Res Int. 2018 Aug;25(24):24172-24180. doi: 10.1007/s11356-018-2473-5. Epub 2018 Jun 12.
3
Evidence of compositional differences between the extracellular and intracellular DNA of a granular sludge biofilm.
Lett Appl Microbiol. 2011 Jul;53(1):1-7. doi: 10.1111/j.1472-765X.2011.03074.x. Epub 2011 May 31.
4
Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour.
J Appl Microbiol. 2011 Feb;110(2):490-8. doi: 10.1111/j.1365-2672.2010.04911.x. Epub 2010 Dec 10.
6
Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion.
Colloids Surf B Biointerfaces. 2016 Oct 1;146:459-67. doi: 10.1016/j.colsurfb.2016.06.039. Epub 2016 Jun 23.
7
Bacteria of eleven different species isolated from biofilms in a meat processing environment have diverse biofilm forming abilities.
Int J Food Microbiol. 2021 Jul 2;349:109232. doi: 10.1016/j.ijfoodmicro.2021.109232. Epub 2021 May 4.
8
A distinguishable role of eDNA in the viscoelastic relaxation of biofilms.
mBio. 2013 Oct 15;4(5):e00497-13. doi: 10.1128/mBio.00497-13.
9
Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa.
PLoS One. 2012;7(10):e46718. doi: 10.1371/journal.pone.0046718. Epub 2012 Oct 8.

引用本文的文献

1
Release of extracellular DNA by sp. as a major determinant for biofilm switching and an early indicator for cell population control.
iScience. 2025 Feb 18;28(3):112063. doi: 10.1016/j.isci.2025.112063. eCollection 2025 Mar 21.
2
Staphylococcus epidermidis alters macrophage polarization and phagocytic uptake by extracellular DNA release in vitro.
NPJ Biofilms Microbiomes. 2024 Nov 20;10(1):131. doi: 10.1038/s41522-024-00604-7.
3
Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy of Biofilms.
ACS Omega. 2024 Aug 27;9(36):37610-37620. doi: 10.1021/acsomega.4c01168. eCollection 2024 Sep 10.
4
Beyond the double helix: the multifaceted landscape of extracellular DNA in biofilms.
Front Cell Infect Microbiol. 2024 Jun 5;14:1400648. doi: 10.3389/fcimb.2024.1400648. eCollection 2024.
6
Novel marine metalloprotease-new approaches for inhibition of biofilm formation of Stenotrophomonas maltophilia.
Appl Microbiol Biotechnol. 2023 Dec;107(23):7119-7134. doi: 10.1007/s00253-023-12781-0. Epub 2023 Sep 27.
7
Bacterial biofilms in the human body: prevalence and impacts on health and disease.
Front Cell Infect Microbiol. 2023 Aug 30;13:1237164. doi: 10.3389/fcimb.2023.1237164. eCollection 2023.
8
Electrostatic interactions mediate the nucleation and growth of a bacterial functional amyloid.
Front Mol Biosci. 2023 Jan 12;10:1070521. doi: 10.3389/fmolb.2023.1070521. eCollection 2023.
9
Why eDNA fractions need consideration in biomonitoring.
Mol Ecol Resour. 2022 Oct;22(7):2458-2470. doi: 10.1111/1755-0998.13658. Epub 2022 Jun 19.

本文引用的文献

1
Microbial exopolymers provide a mechanism for bioaccumulation of contaminants.
Microb Ecol. 1994 May;27(3):279-91. doi: 10.1007/BF00182411.
2
Efficient recovery of environmental DNA for expression cloning by indirect extraction methods.
FEMS Microbiol Ecol. 2003 May 1;44(2):153-63. doi: 10.1016/S0168-6496(02)00462-2.
3
Soil fungal community structure in a temperate upland grassland soil.
FEMS Microbiol Ecol. 2003 Jul 1;45(2):105-14. doi: 10.1016/S0168-6496(03)00126-0.
4
Microbial diversity and functional characterization of sediments from reservoirs of different trophic state.
FEMS Microbiol Ecol. 2003 Dec 1;46(3):331-47. doi: 10.1016/S0168-6496(03)00249-6.
6
Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp.
Appl Environ Microbiol. 1992 Apr;58(4):1284-91. doi: 10.1128/aem.58.4.1284-1291.1992.
7
DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community.
Appl Environ Microbiol. 1988 Mar;54(3):703-711. doi: 10.1128/aem.54.3.703-711.1988.
8
Protection of sediment-adsorbed transforming DNA against enzymatic inactivation.
Appl Environ Microbiol. 1983 Aug;46(2):417-20. doi: 10.1128/aem.46.2.417-420.1983.
9
DNase in stable cystic fibrosis infants: a pilot study.
J Cyst Fibros. 2003 Dec;2(4):183-8. doi: 10.1016/S1569-1993(03)00090-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验