Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
Adv Mater. 2020 Apr;32(13):e1901989. doi: 10.1002/adma.201901989. Epub 2019 Jul 9.
Artificial intelligence (AI) and nanotechnology are two fields that are instrumental in realizing the goal of precision medicine-tailoring the best treatment for each cancer patient. Recent conversion between these two fields is enabling better patient data acquisition and improved design of nanomaterials for precision cancer medicine. Diagnostic nanomaterials are used to assemble a patient-specific disease profile, which is then leveraged, through a set of therapeutic nanotechnologies, to improve the treatment outcome. However, high intratumor and interpatient heterogeneities make the rational design of diagnostic and therapeutic platforms, and analysis of their output, extremely difficult. Integration of AI approaches can bridge this gap, using pattern analysis and classification algorithms for improved diagnostic and therapeutic accuracy. Nanomedicine design also benefits from the application of AI, by optimizing material properties according to predicted interactions with the target drug, biological fluids, immune system, vasculature, and cell membranes, all affecting therapeutic efficacy. Here, fundamental concepts in AI are described and the contributions and promise of nanotechnology coupled with AI to the future of precision cancer medicine are reviewed.
人工智能 (AI) 和纳米技术是实现精准医学目标的两个重要领域,即为每个癌症患者量身定制最佳治疗方案。最近这两个领域的融合使得更好地获取患者数据和改进用于精准癌症医学的纳米材料设计成为可能。诊断纳米材料用于组合特定于患者的疾病特征,然后通过一系列治疗性纳米技术利用这些特征来提高治疗效果。然而,肿瘤内和患者间的高度异质性使得诊断和治疗平台的合理设计以及对其输出的分析变得极其困难。人工智能方法的整合可以弥合这一差距,使用模式分析和分类算法来提高诊断和治疗的准确性。纳米医学设计也受益于人工智能的应用,根据与目标药物、生物流体、免疫系统、血管和细胞膜的预测相互作用来优化材料特性,所有这些都会影响治疗效果。本文描述了人工智能的基本概念,并回顾了纳米技术与人工智能相结合对精准癌症医学未来的贡献和前景。