Suppr超能文献

通过基于知识的复杂能量景观探索进行晶体学精修。

Crystallographic refinement by knowledge-based exploration of complex energy landscapes.

作者信息

Depristo Mark A, de Bakker Paul I W, Johnson Russell J K, Blundell Tom L

机构信息

Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.

出版信息

Structure. 2005 Sep;13(9):1311-9. doi: 10.1016/j.str.2005.06.008.

Abstract

Although X-ray crystallography remains the most versatile method to determine the three-dimensional atomic structure of proteins and much progress has been made in model building and refinement techniques, it remains a challenge to elucidate accurately the structure of proteins in medium-resolution crystals. This is largely due to the difficulty of exploring an immense conformational space to identify the set of conformers that collectively best fits the experimental diffraction pattern. We show here that combining knowledge-based conformational sampling in RAPPER with molecular dynamics/simulated annealing (MD/SA) vastly improves the quality and power of refinement compared to MD/SA alone. The utility of this approach is highlighted by the automated determination of a lysozyme mutant from a molecular replacement solution that is in congruence with a model prepared independently by crystallographers. Finally, we discuss the implications of this work on structure determination in particular and conformational sampling and energy minimization in general.

摘要

尽管X射线晶体学仍然是确定蛋白质三维原子结构最通用的方法,并且在模型构建和精修技术方面已经取得了很大进展,但准确阐明中等分辨率晶体中蛋白质的结构仍然是一项挑战。这主要是由于探索巨大的构象空间以识别共同最适合实验衍射图谱的构象集存在困难。我们在此表明,与单独的分子动力学/模拟退火(MD/SA)相比,将RAPPER中基于知识的构象采样与分子动力学/模拟退火相结合,极大地提高了精修的质量和能力。通过从分子置换溶液中自动确定溶菌酶突变体,该突变体与晶体学家独立制备的模型一致,突出了这种方法的实用性。最后,我们讨论了这项工作对结构确定特别是对构象采样和一般能量最小化的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验