Shnayderman Marianna, Mansfield Brian, Yip Ping, Clark Heather A, Krebs Melissa D, Cohen Sarah J, Zeskind Julie E, Ryan Edward T, Dorkin Henry L, Callahan Michael V, Stair Thomas O, Gelfand Jeffrey A, Gill Christopher J, Hitt Ben, Davis Cristina E
Mechanical and Instruments Division, Bioengineering Group, Charles Stark Draper Laboratory, 555 Technology Square MS37, Cambridge, Massachusetts 02139, USA.
Anal Chem. 2005 Sep 15;77(18):5930-7. doi: 10.1021/ac050348i.
As bacteria grow and proliferate, they release a variety of volatile compounds that can be profiled and used for speciation, providing an approach amenable to disease diagnosis through quick analysis of clinical cultures as well as patient breath analysis. As a practical alternative to mass spectrometry detection and whole cell pyrolysis approaches, we have developed methodology that involves detection via a sensitive, micromachined differential mobility spectrometer (microDMx), for sampling headspace gases produced by bacteria growing in liquid culture. We have applied pattern discovery/recognition algorithms (ProteomeQuest) to analyze headspace gas spectra generated by microDMx to reliably discern multiple species of bacteria in vitro: Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and Mycobacterium smegmatis. The overall accuracy for identifying volatile profiles of a species within the 95% confidence interval for the two highest accuracy models evolved was between 70.4 and 89.3% based upon the coordinated expression of between 5 and 11 features. These encouraging in vitro results suggest that the microDMx technology, coupled with bioinformatics data analysis, has potential for diagnosis of bacterial infections.
随着细菌的生长和繁殖,它们会释放出多种挥发性化合物,这些化合物可以被分析并用于细菌种类鉴定,从而提供一种通过快速分析临床培养物以及患者呼吸气体来进行疾病诊断的方法。作为质谱检测和全细胞热解方法的一种实用替代方案,我们开发了一种方法,该方法通过灵敏的微机械差分迁移谱仪(microDMx)进行检测,以采集液体培养中细菌产生的顶空气体。我们应用模式发现/识别算法(ProteomeQuest)来分析由microDMx生成的顶空气体光谱,从而在体外可靠地辨别多种细菌:大肠杆菌、枯草芽孢杆菌、苏云金芽孢杆菌和耻垢分枝杆菌。基于5至11个特征的协同表达,在两个最高准确度模型的95%置信区间内,识别某一细菌挥发性图谱的总体准确度在70.4%至89.3%之间。这些令人鼓舞的体外实验结果表明,microDMx技术与生物信息学数据分析相结合,在细菌感染诊断方面具有潜力。