Suppr超能文献

一种基于人群的贝叶斯方法用于葡萄糖和胰岛素稳态的最小模型。

A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis.

作者信息

Andersen Kim E, Højbjerre Malene

机构信息

Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, Aalborg East DK-9220, Denmark.

出版信息

Stat Med. 2005 Aug 15;24(15):2381-400. doi: 10.1002/sim.2126.

Abstract

The minimal model was proposed in the late 1970s by Bergman et al. (Am. J. Physiol. 1979; 236(6):E667) as a powerful model consisting of three differential equations describing the glucose and insulin kinetics of a single individual. Considering the glucose and insulin simultaneously, the minimal model is a highly ill-posed estimation problem, where the reconstruction most often has been done by non-linear least squares techniques separately for each entity. The minimal model was originally specified for a single individual and does not combine several individuals with the advantage of estimating the metabolic portrait for a whole population. Traditionally it has been analysed in a deterministic set-up with only error terms on the measurements. In this work we adopt a Bayesian graphical model to describe the coupled minimal model that accounts for both measurement and process variability, and the model is extended to a population-based model. The estimation of the parameters are efficiently implemented in a Bayesian approach where posterior inference is made through the use of Markov chain Monte Carlo techniques. Hereby we obtain a powerful and flexible modelling framework for regularizing the ill-posed estimation problem often inherited in coupled stochastic differential equations. We demonstrate the method on experimental data from intravenous glucose tolerance tests performed on 19 normal glucose-tolerant subjects.

摘要

最小模型由伯格曼等人于20世纪70年代末提出(《美国生理学杂志》,1979年;236(6):E667),是一个强大的模型,由三个描述单个个体葡萄糖和胰岛素动力学的微分方程组成。同时考虑葡萄糖和胰岛素,最小模型是一个高度不适定的估计问题,其中重建通常是通过对每个实体分别使用非线性最小二乘法来完成的。最小模型最初是为单个个体指定的,并没有将多个个体结合起来以获得估计整个人群代谢特征的优势。传统上,它是在仅考虑测量误差项的确定性设置中进行分析的。在这项工作中,我们采用贝叶斯图形模型来描述考虑了测量和过程变异性的耦合最小模型,并将该模型扩展为基于人群的模型。参数估计通过贝叶斯方法有效地实现,其中后验推断是通过使用马尔可夫链蒙特卡罗技术进行的。由此,我们获得了一个强大且灵活的建模框架,用于对耦合随机微分方程中经常存在的不适定估计问题进行正则化。我们在对19名糖耐量正常的受试者进行的静脉葡萄糖耐量试验的实验数据上展示了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验