Drummond D Allan, Bloom Jesse D, Adami Christoph, Wilke Claus O, Arnold Frances H
Program in Computation and Neural Systems and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125-4100, USA.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43. doi: 10.1073/pnas.0504070102. Epub 2005 Sep 21.
Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons that have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expression's dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions and can explain why highly expressed proteins evolve slowly across the tree of life.
近期的许多研究都探讨了分子和群体遗传学对蛋白质序列进化速率的限制。进化速率的最佳预测指标是表达水平,但其原因仍未得到解释。在此,我们假设,为减轻蛋白质错误折叠负担而进行的选择,将有利于对翻译错义错误具有更高稳健性的蛋白质序列。翻译稳健性的压力随表达水平增加而增大,并限制序列进化。利用多个已测序的酵母基因组、全局表达和蛋白质丰度数据,以及可追溯到酵母古老全基因组复制的旁系同源基因集,我们排除了几种混杂效应,并表明表达水平大致解释了酿酒酵母蛋白质进化速率中约一半的变异。我们研究了表达起主导作用的原因,发现全基因组测试支持翻译稳健性解释,而非现有的关于功能或翻译效率限制的假设。我们的结果表明,蛋白质的进化速率在很大程度上与其功能无关,并且可以解释为什么高表达蛋白质在整个生命树中进化缓慢。