Beenhakker Mark P, DeLong Nicholas D, Saideman Shari R, Nadim Farzan, Nusbaum Michael P
Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
J Neurosci. 2005 Sep 21;25(38):8794-806. doi: 10.1523/JNEUROSCI.2663-05.2005.
Phasically active sensory systems commonly influence rhythmic motor activity via synaptic actions on the relevant circuit and/or motor neurons. Using the crab stomatogastric nervous system (STNS), we identified a distinct synaptic action by which an identified proprioceptor, the gastropyloric muscle stretch receptor (GPR) neuron, regulates the gastric mill (chewing) motor rhythm. Previous work showed that rhythmically stimulating GPR in a gastric mill-like pattern, in the isolated STNS, elicits the gastric mill rhythm via its activation of two identified projection neurons, modulatory commissural neuron 1 (MCN1) and commissural projection neuron 2, in the commissural ganglia. Here, we determine how activation of GPR with a behaviorally appropriate pattern (active during each gastric mill retractor phase) influences an ongoing gastric mill rhythm via actions in the stomato gastric ganglion, where the gastric mill circuit is located. Stimulating GPR during each retractor phase selectively prolongs that phase and thereby slows the ongoing rhythm. This selective action on the retractor phase results from two distinct GPR actions. First, GPR presynaptically inhibits the axon terminals of MCN1, reducing MCN1 excitation of all gastric mill neurons. Second, GPR directly excites the retractor phase neurons. Because MCN1 transmitter release occurs during each retractor phase, these parallel GPR actions selectively reduce the buildup of excitatory drive to the protractor phase neurons, delaying each protractor burst. Thus, rhythmic proprioceptor feedback to a motor circuit can result from a global reduction in excitatory drive to that circuit, via presynaptic inhibition, coupled with a phase-specific excitatory input that prolongs the excited phase by delaying the onset of the subsequent phase.
具有阶段性活动的感觉系统通常通过对相关神经回路和/或运动神经元的突触作用来影响节律性运动活动。利用螃蟹的口胃神经系统(STNS),我们发现了一种独特的突触作用,即一种已确定的本体感受器——幽门肌伸展感受器(GPR)神经元,可调节胃磨(咀嚼)运动节律。先前的研究表明,在分离的STNS中,以类似胃磨的模式有节律地刺激GPR,通过激活联合神经节中的两个已确定的投射神经元——调节性联合神经元1(MCN1)和联合投射神经元2,引发胃磨节律。在这里,我们确定以行为上适当的模式(在每个胃磨收缩期活跃)激活GPR如何通过位于口胃神经节(胃磨回路所在位置)中的作用来影响正在进行的胃磨节律。在每个收缩期刺激GPR会选择性地延长该阶段,从而减慢正在进行的节律。对收缩期的这种选择性作用源于两种不同的GPR作用。首先,GPR在突触前抑制MCN1的轴突终末,减少MCN1对所有胃磨神经元的兴奋作用。其次,GPR直接兴奋收缩期神经元。由于MCN1的递质释放发生在每个收缩期,这些并行的GPR作用选择性地减少了对伸展期神经元的兴奋性驱动的积累,延迟了每个伸展期的爆发。因此,对运动回路的节律性本体感受器反馈可通过突触前抑制导致对该回路兴奋性驱动的整体降低,再加上一个相位特异性的兴奋性输入,该输入通过延迟后续相位的开始来延长兴奋期。