Suppr超能文献

本体感受器输入至调制投射神经元的机械感觉门控

Mechanosensory gating of proprioceptor input to modulatory projection neurons.

作者信息

Beenhakker Mark P, Kirby Matthew S, Nusbaum Michael P

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Neurosci. 2007 Dec 26;27(52):14308-16. doi: 10.1523/JNEUROSCI.4404-07.2007.

Abstract

Sensorimotor gating commonly occurs at sensory neuron synapses onto motor circuit neurons and motor neurons. Here, using the crab stomatogastric nervous system, we show that sensorimotor gating also occurs at the level of the projection neurons that activate motor circuits. We compared the influence of the gastro-pyloric receptor (GPR) muscle stretch-sensitive neuron on two projection neurons, modulatory commissural neuron 1 (MCN1) and commissural projection neuron 2 (CPN2), with and without a preceding activation of the mechanosensory ventral cardiac neurons (VCNs). MCN1 and CPN2 project from the paired commissural ganglia (CoGs) to the stomatogastric ganglion (STG), where they activate the gastric mill (chewing) motor circuit. When stimulated separately, the GPR and VCN neurons each elicit the gastric mill rhythm by coactivating MCN1 and CPN2. When GPR is instead stimulated during the VCN-gastric mill rhythm, it slows this rhythm. This effect results from a second GPR synapse onto MCN1 that presynaptically inhibits its STG terminals. Here, we show that, during the VCN-triggered rhythm, the GPR excitation of MCN1 and CPN2 in the CoGs is gated out, leaving only its influence in the STG. This gating effect appears to occur within the CoG and does not result from a ceiling effect on projection neuron firing frequency. Additionally, this gating action enables GPR to either activate rhythmic motor activity or act as a phasic sensorimotor feedback system. These results also indicate that the site of sensorimotor gating can occur at the level of the projection neurons that activate a motor circuit.

摘要

感觉运动门控通常发生在感觉神经元与运动回路神经元以及运动神经元之间的突触处。在此,我们利用蟹的口胃神经系统表明,感觉运动门控也发生在激活运动回路的投射神经元水平。我们比较了胃幽门受体(GPR)肌肉拉伸敏感神经元在有无机械感觉性腹侧心神经元(VCNs)预先激活的情况下,对两个投射神经元,即调制联合神经元1(MCN1)和联合投射神经元2(CPN2)的影响。MCN1和CPN2从成对的联合神经节(CoGs)投射到口胃神经节(STG),在那里它们激活胃磨(咀嚼)运动回路。当分别受到刺激时,GPR和VCN神经元各自通过共同激活MCN1和CPN2来引发胃磨节律。当在VCN - 胃磨节律期间刺激GPR时,它会减慢这种节律。这种效应源于GPR在MCN1上的第二个突触,该突触在突触前抑制其在STG的终末。在此,我们表明,在VCN触发的节律期间,CoGs中MCN1和CPN2的GPR兴奋被门控出去,仅留下其在STG中的影响。这种门控效应似乎发生在CoG内,并非由投射神经元放电频率的上限效应导致。此外,这种门控作用使GPR既能激活节律性运动活动,又能充当相位感觉运动反馈系统。这些结果还表明,感觉运动门控的位点可以发生在激活运动回路的投射神经元水平。

相似文献

1
Mechanosensory gating of proprioceptor input to modulatory projection neurons.
J Neurosci. 2007 Dec 26;27(52):14308-16. doi: 10.1523/JNEUROSCI.4404-07.2007.
2
State-dependent sensorimotor gating in a rhythmic motor system.
J Neurophysiol. 2017 Nov 1;118(5):2806-2818. doi: 10.1152/jn.00420.2017. Epub 2017 Aug 16.
3
Mechanosensory activation of a motor circuit by coactivation of two projection neurons.
J Neurosci. 2004 Jul 28;24(30):6741-50. doi: 10.1523/JNEUROSCI.1682-04.2004.
4
Different sensory systems share projection neurons but elicit distinct motor patterns.
J Neurosci. 2004 Dec 15;24(50):11381-90. doi: 10.1523/JNEUROSCI.3219-04.2004.
5
Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron.
J Neurosci. 2005 Sep 21;25(38):8794-806. doi: 10.1523/JNEUROSCI.2663-05.2005.
6
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
7
State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs.
J Neurosci. 2008 Sep 17;28(38):9564-74. doi: 10.1523/JNEUROSCI.3011-08.2008.
9
Hormonal modulation of sensorimotor integration.
J Neurosci. 2010 Feb 17;30(7):2418-27. doi: 10.1523/JNEUROSCI.5533-09.2010.
10
Intercircuit control via rhythmic regulation of projection neuron activity.
J Neurosci. 2004 Aug 25;24(34):7455-63. doi: 10.1523/JNEUROSCI.1840-04.2004.

引用本文的文献

1
Probing the Effect of Acidosis on Tether-Mode Mechanotransduction of Proprioceptors.
Int J Mol Sci. 2023 Aug 14;24(16):12783. doi: 10.3390/ijms241612783.
2
Neural circuit regulation by identified modulatory projection neurons.
Front Neurosci. 2023 Mar 17;17:1154769. doi: 10.3389/fnins.2023.1154769. eCollection 2023.
3
Multiple intrinsic membrane properties are modulated in a switch from single- to dual-network activity.
J Neurophysiol. 2022 Nov 1;128(5):1181-1198. doi: 10.1152/jn.00337.2022. Epub 2022 Oct 5.
4
From the Neuroscience of Individual Variability to Climate Change.
J Neurosci. 2021 Dec 15;41(50):10213-10221. doi: 10.1523/JNEUROSCI.1261-21.2021. Epub 2021 Nov 9.
5
Perturbation-specific responses by two neural circuits generating similar activity patterns.
Curr Biol. 2021 Nov 8;31(21):4831-4838.e4. doi: 10.1016/j.cub.2021.08.042. Epub 2021 Sep 9.
6
Coupling between fast and slow oscillator circuits in is temperature-compensated.
Elife. 2021 Feb 4;10:e60454. doi: 10.7554/eLife.60454.
8
State-Dependent Modification of Sensory Sensitivity via Modulation of Backpropagating Action Potentials.
eNeuro. 2018 Sep 11;5(4). doi: 10.1523/ENEURO.0283-18.2018. eCollection 2018 Jul-Aug.
9
State-dependent sensorimotor gating in a rhythmic motor system.
J Neurophysiol. 2017 Nov 1;118(5):2806-2818. doi: 10.1152/jn.00420.2017. Epub 2017 Aug 16.
10
Functional consequences of neuropeptide and small-molecule co-transmission.
Nat Rev Neurosci. 2017 Jul;18(7):389-403. doi: 10.1038/nrn.2017.56. Epub 2017 Jun 8.

本文引用的文献

1
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
2
Sensory-induced modification of two motor patterns in the crab, Cancer pagurus.
J Exp Biol. 2007 Aug;210(Pt 16):2912-22. doi: 10.1242/jeb.006874.
3
Convergent motor patterns from divergent circuits.
J Neurosci. 2007 Jun 20;27(25):6664-74. doi: 10.1523/JNEUROSCI.0315-07.2007.
4
Modulation of rhythmic motor activity by pyrokinin peptides.
J Neurophysiol. 2007 Jan;97(1):579-95. doi: 10.1152/jn.00772.2006. Epub 2006 Oct 25.
5
Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs.
Annu Rev Physiol. 2007;69:291-316. doi: 10.1146/annurev.physiol.69.031905.161516.
6
Dynamic sensorimotor interactions in locomotion.
Physiol Rev. 2006 Jan;86(1):89-154. doi: 10.1152/physrev.00028.2005.
7
Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron.
J Neurosci. 2005 Sep 21;25(38):8794-806. doi: 10.1523/JNEUROSCI.2663-05.2005.
8
Optical imaging of neuronal populations during decision-making.
Science. 2005 Feb 11;307(5711):896-901. doi: 10.1126/science.1103736.
9
Different sensory systems share projection neurons but elicit distinct motor patterns.
J Neurosci. 2004 Dec 15;24(50):11381-90. doi: 10.1523/JNEUROSCI.3219-04.2004.
10
Intercircuit control via rhythmic regulation of projection neuron activity.
J Neurosci. 2004 Aug 25;24(34):7455-63. doi: 10.1523/JNEUROSCI.1840-04.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验