Suppr超能文献

通过突触前抑制对运动模式调制进行回路间控制。

Intercircuit control of motor pattern modulation by presynaptic inhibition.

作者信息

Bartos M, Nusbaum M P

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Neurosci. 1997 Apr 1;17(7):2247-56. doi: 10.1523/JNEUROSCI.17-07-02247.1997.

Abstract

Rhythmically active neural networks can control the modulatory input that they receive via their synaptic effects onto modulatory neurons. This synaptic control of network modulation can occur presynaptically, at the axon terminals of the modulatory neuron. For example, in the crab stomatogastric ganglion (STG), a gastric mill network neuron presynaptically inhibits transmitter release from a modulatory projection neuron called modulatory commissural neuron 1. We showed previously that the gastric mill rhythm-timed presynaptic inhibition of the STG terminals of MCN1 is pivotal for enabling MCN1 to activate this rhythm. We also showed that MCN1 excites the pyloric rhythm within the STG. Here we show that, because MCN1 stimulation conjointly excites the gastric mill and pyloric rhythms, the gastric mill rhythm-timed presynaptic inhibition of MCN1 causes a rhythmic interruption in the MCN1-mediated excitation of the pyloric rhythm. Consequently, during each protraction phase of the gastric mill rhythm, presynaptic inhibition suppresses MCN1 excitation of the pyloric rhythm, thereby weakening the pyloric rhythm. During the retraction phase, presynaptic inhibition is absent and MCN1 elicits a faster, stronger, and modified pyloric rhythm. Thus, in addition to its role in enabling a neural circuit to regulate the modulatory transmission that it receives, presynaptic inhibition is also used effectively to rhythmically control the activity level of a distinct, but behaviorally related, neural circuit.

摘要

有节律地活动的神经网络可以通过其对调制神经元的突触效应来控制它们所接收的调制输入。这种对网络调制的突触控制可以发生在突触前,即在调制神经元的轴突终末。例如,在蟹的口胃神经节(STG)中,一个胃磨网络神经元在突触前抑制一种名为调制联合神经元1的调制投射神经元的递质释放。我们之前表明,胃磨节律定时对MCN1的STG终末的突触前抑制对于使MCN1激活这种节律至关重要。我们还表明,MCN1在STG内兴奋幽门节律。在这里我们表明,由于MCN1刺激同时兴奋胃磨和幽门节律,胃磨节律定时对MCN1的突触前抑制会导致MCN1介导的对幽门节律的兴奋出现节律性中断。因此,在胃磨节律的每个伸展阶段,突触前抑制会抑制MCN1对幽门节律的兴奋,从而减弱幽门节律。在收缩阶段,不存在突触前抑制,MCN1会引发更快、更强且经过改变的幽门节律。因此,除了其在使神经回路调节其所接收的调制传递方面的作用外,突触前抑制还被有效地用于有节律地控制一个不同但与行为相关的神经回路中的活动水平。

相似文献

1
Intercircuit control of motor pattern modulation by presynaptic inhibition.
J Neurosci. 1997 Apr 1;17(7):2247-56. doi: 10.1523/JNEUROSCI.17-07-02247.1997.
2
Intercircuit control via rhythmic regulation of projection neuron activity.
J Neurosci. 2004 Aug 25;24(34):7455-63. doi: 10.1523/JNEUROSCI.1840-04.2004.
3
Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron.
J Neurosci. 2005 Sep 21;25(38):8794-806. doi: 10.1523/JNEUROSCI.2663-05.2005.
4
A switch between two modes of synaptic transmission mediated by presynaptic inhibition.
Nature. 1995 Nov 30;378(6556):502-5. doi: 10.1038/378502a0.
5
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
6
State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs.
J Neurosci. 2008 Sep 17;28(38):9564-74. doi: 10.1523/JNEUROSCI.3011-08.2008.
7
Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit.
J Neurosci. 2000 Dec 1;20(23):8943-53. doi: 10.1523/JNEUROSCI.20-23-08943.2000.
8
Mechanosensory gating of proprioceptor input to modulatory projection neurons.
J Neurosci. 2007 Dec 26;27(52):14308-16. doi: 10.1523/JNEUROSCI.4404-07.2007.
9
Coordination of fast and slow rhythmic neuronal circuits.
J Neurosci. 1999 Aug 1;19(15):6650-60. doi: 10.1523/JNEUROSCI.19-15-06650.1999.
10
Hormonal modulation of sensorimotor integration.
J Neurosci. 2010 Feb 17;30(7):2418-27. doi: 10.1523/JNEUROSCI.5533-09.2010.

引用本文的文献

1
Neuropeptide Modulation Enables Biphasic Internetwork Coordination via a Dual-Network Neuron.
eNeuro. 2024 Jun 27;11(6). doi: 10.1523/ENEURO.0121-24.2024. Print 2024 Jun.
2
Neuromodulation reduces interindividual variability of neuronal output.
eNeuro. 2022 Jul 18;9(4). doi: 10.1523/ENEURO.0166-22.2022.
3
Feeding state-dependent modulation of feeding-related motor patterns.
J Neurophysiol. 2021 Dec 1;126(6):1903-1924. doi: 10.1152/jn.00387.2021. Epub 2021 Oct 20.
4
Perturbation-specific responses by two neural circuits generating similar activity patterns.
Curr Biol. 2021 Nov 8;31(21):4831-4838.e4. doi: 10.1016/j.cub.2021.08.042. Epub 2021 Sep 9.
5
Neuronal Switching between Single- and Dual-Network Activity via Modulation of Intrinsic Membrane Properties.
J Neurosci. 2021 Sep 15;41(37):7848-7863. doi: 10.1523/JNEUROSCI.0286-21.2021. Epub 2021 Aug 4.
6
Coupling between fast and slow oscillator circuits in is temperature-compensated.
Elife. 2021 Feb 4;10:e60454. doi: 10.7554/eLife.60454.
8
Similarities and differences in circuit responses to applied Gly-SIFamide and peptidergic (Gly-SIFamide) neuron stimulation.
J Neurophysiol. 2019 Mar 1;121(3):950-972. doi: 10.1152/jn.00567.2018. Epub 2019 Jan 16.
9
Functional consequences of neuropeptide and small-molecule co-transmission.
Nat Rev Neurosci. 2017 Jul;18(7):389-403. doi: 10.1038/nrn.2017.56. Epub 2017 Jun 8.
10
Complicating connectomes: Electrical coupling creates parallel pathways and degenerate circuit mechanisms.
Dev Neurobiol. 2017 May;77(5):597-609. doi: 10.1002/dneu.22410. Epub 2016 Aug 8.

本文引用的文献

1
Functional organization of cotransmission systems: lessons from small nervous systems.
Invert Neurosci. 1995;1(2):105-12. doi: 10.1007/BF02331908.
2
Two novel tachykinin-related peptides from the nervous system of the crab Cancer borealis.
J Exp Biol. 1997 Sep;200(Pt 17):2279-94. doi: 10.1242/jeb.200.17.2279.
3
Ultrastructure of the stomatogastric ganglion neuropil of the crab, Cancer borealis.
J Comp Neurol. 1996 Oct 21;374(3):362-75. doi: 10.1002/(SICI)1096-9861(19961021)374:3<362::AID-CNE5>3.0.CO;2-#.
4
A cerebral central pattern generator in Aplysia and its connections with buccal feeding circuitry.
J Neurosci. 1996 Nov 1;16(21):7030-45. doi: 10.1523/JNEUROSCI.16-21-07030.1996.
6
Interactions among neural networks for behavior.
Curr Opin Neurobiol. 1995 Dec;5(6):792-8. doi: 10.1016/0959-4388(95)80108-1.
7
Intrinsic and extrinsic neuromodulation of motor circuits.
Curr Opin Neurobiol. 1995 Dec;5(6):799-808. doi: 10.1016/0959-4388(95)80109-x.
8
Principles of rhythmic motor pattern generation.
Physiol Rev. 1996 Jul;76(3):687-717. doi: 10.1152/physrev.1996.76.3.687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验