Suppr超能文献

激素对感觉运动整合的调制。

Hormonal modulation of sensorimotor integration.

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Neurosci. 2010 Feb 17;30(7):2418-27. doi: 10.1523/JNEUROSCI.5533-09.2010.

Abstract

Neuronal circuits commonly receive simultaneous inputs from descending, ascending, and hormonal systems. Thus far, however, most such inputs have been studied individually to determine their influence on a given circuit. Here, we examine the integrated action of the hormone crustacean cardioactive peptide (CCAP) and the gastropyloric receptor (GPR) proprioceptor neuron on the biphasic gastric mill (chewing) rhythm driven by the projection neuron modulatory commissural neuron 1 (MCN1) in the isolated crab stomatogastric ganglion. In control saline, GPR stimulation selectively prolongs the gastric mill retractor phase, via presynaptic inhibition of MCN1. In the absence of GPR stimulation, CCAP does not alter retraction duration and modestly prolongs protraction. Here, we show, using computational modeling and dynamic-clamp manipulations, that the presence of CCAP weakens or eliminates the GPR effect on the gastric mill rhythm. This CCAP action results from its ability to activate the same modulator-activated conductance (G(MI)) as MCN1 in the gastric mill circuit neuron lateral gastric (LG). Because GPR prolongs retraction by weakening MCN1 activation of G(MI) in LG, the parallel G(MI) activation by CCAP reduces the impact of GPR regulation of this conductance. The CCAP-activated G(MI) thus counteracts the GPR-mediated decrease in the MCN1-activated G(MI) in LG and reduces the GPR ability to regulate the gastric mill rhythm. Consequently, although CCAP neither changes retraction duration nor alters GPR inhibition of MCN1, its activation of a modulator-activated conductance in a pivotal downstream circuit neuron enables CCAP to weaken or eliminate sensory regulation of motor circuit output.

摘要

神经元回路通常同时接收来自下行、上行和激素系统的输入。然而,到目前为止,大多数此类输入都是单独研究的,以确定它们对特定回路的影响。在这里,我们研究了激素甲壳动物心脏活性肽 (CCAP) 和胃幽门受体 (GPR) 本体感受神经元对分离螃蟹胃神经节中投射神经元调制性连合神经元 1 (MCN1) 驱动的双相胃磨(咀嚼)节律的综合作用。在对照盐水中,GPR 刺激通过对 MCN1 的突触前抑制选择性延长胃磨回缩相。在没有 GPR 刺激的情况下,CCAP 不会改变回缩持续时间,只会适度延长伸展。在这里,我们使用计算建模和动态钳位操作表明,CCAP 的存在削弱或消除了 GPR 对胃磨节律的影响。这种 CCAP 作用是由于其能够在胃磨回路神经元外侧胃 (LG) 中激活与 MCN1 相同的调制器激活电导 (G(MI))。由于 GPR 通过削弱 MCN1 在 LG 中对 G(MI)的激活来延长回缩,因此 CCAP 的平行 G(MI)激活会降低 GPR 对该电导的调节作用。因此,CCAP 激活的 G(MI) 抵消了 GPR 介导的 MCN1 激活的 G(MI) 在 LG 中的减少,并降低了 GPR 调节胃磨节律的能力。因此,尽管 CCAP 既不改变回缩持续时间,也不改变 GPR 对 MCN1 的抑制作用,但它在关键下游回路神经元中激活调制器激活的电导,使 CCAP 能够削弱或消除对运动回路输出的感觉调节。

相似文献

1
Hormonal modulation of sensorimotor integration.
J Neurosci. 2010 Feb 17;30(7):2418-27. doi: 10.1523/JNEUROSCI.5533-09.2010.
3
Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron.
J Neurosci. 2005 Sep 21;25(38):8794-806. doi: 10.1523/JNEUROSCI.2663-05.2005.
4
Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system.
J Neurophysiol. 2009 Dec;102(6):3492-504. doi: 10.1152/jn.00833.2009. Epub 2009 Oct 14.
5
State-dependent sensorimotor gating in a rhythmic motor system.
J Neurophysiol. 2017 Nov 1;118(5):2806-2818. doi: 10.1152/jn.00420.2017. Epub 2017 Aug 16.
6
Peptide hormone modulation of a neuronally modulated motor circuit.
J Neurophysiol. 2007 Dec;98(6):3206-20. doi: 10.1152/jn.00795.2006. Epub 2007 Oct 3.
7
Mechanosensory gating of proprioceptor input to modulatory projection neurons.
J Neurosci. 2007 Dec 26;27(52):14308-16. doi: 10.1523/JNEUROSCI.4404-07.2007.
8
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
9
Convergent neuromodulation onto a network neuron can have divergent effects at the network level.
J Comput Neurosci. 2016 Apr;40(2):113-35. doi: 10.1007/s10827-015-0587-z. Epub 2016 Jan 21.
10
Intercircuit control of motor pattern modulation by presynaptic inhibition.
J Neurosci. 1997 Apr 1;17(7):2247-56. doi: 10.1523/JNEUROSCI.17-07-02247.1997.

引用本文的文献

1
Perturbation-specific responses by two neural circuits generating similar activity patterns.
Curr Biol. 2021 Nov 8;31(21):4831-4838.e4. doi: 10.1016/j.cub.2021.08.042. Epub 2021 Sep 9.
2
Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in .
ACS Chem Neurosci. 2021 Feb 17;12(4):782-798. doi: 10.1021/acschemneuro.1c00007. Epub 2021 Feb 1.
3
Functional consequences of neuropeptide and small-molecule co-transmission.
Nat Rev Neurosci. 2017 Jul;18(7):389-403. doi: 10.1038/nrn.2017.56. Epub 2017 Jun 8.
4
5
Autism, oxytocin and interoception.
Neurosci Biobehav Rev. 2014 Nov;47:410-30. doi: 10.1016/j.neubiorev.2014.09.012. Epub 2014 Sep 30.
6
A conserved dopamine-cholecystokinin signaling pathway shapes context-dependent Caenorhabditis elegans behavior.
PLoS Genet. 2014 Aug 28;10(8):e1004584. doi: 10.1371/journal.pgen.1004584. eCollection 2014 Aug.
7
Convergent rhythm generation from divergent cellular mechanisms.
J Neurosci. 2013 Nov 13;33(46):18047-64. doi: 10.1523/JNEUROSCI.3217-13.2013.
8
Neuropeptide modulation of microcircuits.
Curr Opin Neurobiol. 2012 Aug;22(4):592-601. doi: 10.1016/j.conb.2012.01.003. Epub 2012 Feb 1.
9
Tonic dopamine induces persistent changes in the transient potassium current through translational regulation.
J Neurosci. 2011 Sep 14;31(37):13046-56. doi: 10.1523/JNEUROSCI.2194-11.2011.
10
Neural circuit flexibility in a small sensorimotor system.
Curr Opin Neurobiol. 2011 Aug;21(4):544-52. doi: 10.1016/j.conb.2011.05.019. Epub 2011 Jun 30.

本文引用的文献

1
Functional consequences of animal-to-animal variation in circuit parameters.
Nat Neurosci. 2009 Nov;12(11):1424-30. doi: 10.1038/nn.2404. Epub 2009 Oct 18.
2
Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system.
J Neurophysiol. 2009 Dec;102(6):3492-504. doi: 10.1152/jn.00833.2009. Epub 2009 Oct 14.
4
Reliable neuromodulation from circuits with variable underlying structure.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11742-6. doi: 10.1073/pnas.0905614106. Epub 2009 Jun 24.
5
Serotonergic modulation of odor input to the mammalian olfactory bulb.
Nat Neurosci. 2009 Jun;12(6):784-91. doi: 10.1038/nn.2335. Epub 2009 May 10.
6
How multiple conductances determine electrophysiological properties in a multicompartment model.
J Neurosci. 2009 Apr 29;29(17):5573-86. doi: 10.1523/JNEUROSCI.4438-08.2009.
7
In search of lost presynaptic inhibition.
Exp Brain Res. 2009 Jun;196(1):139-51. doi: 10.1007/s00221-009-1758-9. Epub 2009 Mar 26.
8
How does maintenance of network activity depend on endogenous dynamics of isolated neurons?
Neural Comput. 2009 Jun;21(6):1665-82. doi: 10.1162/neco.2009.01-08-685.
9
Measurement of neuropeptides in crustacean hemolymph via MALDI mass spectrometry.
J Am Soc Mass Spectrom. 2009 Apr;20(4):708-18. doi: 10.1016/j.jasms.2008.12.007. Epub 2008 Dec 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验