Sorg Brian S, Moeller Benjamin J, Donovan Owen, Cao Yiting, Dewhirst Mark W
Duke University Medical Center, Department of Radiation Oncology, Durham, North Carolina, USA.
J Biomed Opt. 2005 Jul-Aug;10(4):44004. doi: 10.1117/1.2003369.
Tumor hypoxia has been shown to have prognostic value in clinical trials involving radiation, chemotherapy, and surgery. Tumor oxygenation studies at microvascular levels can provide understanding of oxygen transport on scales at which oxygen transfer to tissue occurs. To fully grasp the significance of blood oxygen delivery and hypoxia at microvascular levels during tumor growth and angiogenesis, the spatial and temporal relationship of the data must be preserved and mapped. Using tumors grown in window chamber models, hyperspectral imaging can provide serial spatial maps of blood oxygenation in terms of hemoglobin saturation at the microvascular level. We describe our application of hyperspectral imaging for in vivo microvascular tumor oxygen transport studies using red fluorescent protein (RFP) to identify all tumor cells, and hypoxia-driven green fluorescent protein (GFP) to identify the hypoxic fraction. 4T1 mouse mammary carcinoma cells, stably transfected with both reporter genes, are grown in dorsal skin-fold window chambers. Hyperspectral imaging is used to create image maps of hemoglobin saturation, and classify image pixels where RFP alone is present (tumor cells), or both RFP and GFP are present (hypoxic tumor cells). In this work, in vivo calibration of the imaging system is described and in vivo results are shown.
肿瘤缺氧已在涉及放疗、化疗和手术的临床试验中显示出具有预后价值。微血管水平的肿瘤氧合研究能够提供对氧气输送到组织发生的尺度上的氧转运的理解。为了充分理解肿瘤生长和血管生成过程中微血管水平的血氧输送和缺氧的意义,必须保留并绘制数据的时空关系。利用在窗口室模型中生长的肿瘤,高光谱成像可以提供微血管水平上血红蛋白饱和度方面的血氧合序列空间图。我们描述了我们使用高光谱成像进行体内微血管肿瘤氧转运研究的应用,使用红色荧光蛋白(RFP)识别所有肿瘤细胞,以及缺氧驱动的绿色荧光蛋白(GFP)识别缺氧部分。稳定转染了这两种报告基因的4T1小鼠乳腺癌细胞在背部皮肤褶皱窗口室中生长。高光谱成像用于创建血红蛋白饱和度的图像地图,并对仅存在RFP(肿瘤细胞)或同时存在RFP和GFP(缺氧肿瘤细胞)的图像像素进行分类。在这项工作中,描述了成像系统的体内校准并展示了体内结果。