Suppr超能文献

从自发药品不良反应报告数据中检测到的信号的影响分析。

Impact analysis of signals detected from spontaneous adverse drug reaction reporting data.

作者信息

Waller Patrick, Heeley Emma, Moseley Jane

机构信息

Patrick Waller Limited, Consultancy in Pharmacovigilance and Pharmacoepidemiology, Southampton, UK.

出版信息

Drug Saf. 2005;28(10):843-50. doi: 10.2165/00002018-200528100-00002.

Abstract

This paper describes a new method of prioritising signals of potential adverse drug reactions (ADRs) detected from spontaneous reports that is called impact analysis. This is an interim step between signal detection and detailed signal evaluation. Using mathematical screening tools, large numbers of signals may now be detected from spontaneous ADR databases. Regulatory authorities need to rapidly prioritise them and focus on those that are most likely to require significant action. Using two scores ranging from one to 100, each with three input variables, signals may be categorised in terms of the strength of evidence (E) and the potential public health impact (P). In a two-by-two figure with empirically derived cut-off points of ten (the logarithmic mean) for each score, signals are placed in one of four categories (A-D) that are ranked according to their priority (A being the highest and D the lowest). A sensitivity analysis is then performed that tests the robustness of the categorisation in relation to each of the six input variables. A computer program has been written to facilitate the process and reduce error. Further work is required to test the feasibility and value of impact analysis in practice.

摘要

本文介绍了一种对从自发报告中检测到的潜在药物不良反应(ADR)信号进行优先级排序的新方法,即影响分析。这是信号检测与详细信号评估之间的一个中间步骤。利用数学筛选工具,现在可以从自发ADR数据库中检测到大量信号。监管机构需要迅速对这些信号进行优先级排序,并关注那些最有可能需要采取重大行动的信号。通过使用两个范围从1到100的分数,每个分数都有三个输入变量,可以根据证据强度(E)和潜在公共卫生影响(P)对信号进行分类。在一个二维图中,每个分数的经验得出的截止点为10(对数平均值),信号被归入四个类别(A-D)之一,这些类别根据其优先级进行排序(A最高,D最低)。然后进行敏感性分析,测试分类相对于六个输入变量中每一个的稳健性。已经编写了一个计算机程序来促进这一过程并减少错误。需要进一步开展工作来测试影响分析在实际应用中的可行性和价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验