Dyrstad Sissel E, Lotsberg Maria L, Tan Tuan Zea, Pettersen Ina K N, Hjellbrekke Silje, Tusubira Deusdedit, Engelsen Agnete S T, Daubon Thomas, Mourier Arnaud, Thiery Jean Paul, Dahl Olav, Lorens James B, Tronstad Karl Johan, Røsland Gro V
Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.
Centre for Cancer Biomarkers CCBIO, University of Bergen, 5009 Bergen, Norway.
Cancers (Basel). 2021 Feb 24;13(5):941. doi: 10.3390/cancers13050941.
Increased glycolytic activity is a hallmark of cancer initiation and progression and is often observed in non-small cell lung cancer (NSCLC). Pyruvate dehydrogenase (PDH) complex acts as a gatekeeper between glycolysis and oxidative phosphorylation, and activation of PDH is known to inhibit glycolytic activity. As part of a standard therapeutic regimen, patients with NSCLC harboring oncogenic mutations in the epidermal growth factor receptor (EGFR) are treated with EGFR tyrosine kinase inhibitors (EGFR TKIs). Independent of good initial response, development of resistance to this therapy is inevitable. In the presented work, we propose that inhibition of glycolysis will add to the therapeutic effects and possibly prevent development of resistance against both EGFR TKIs and ionizing radiation in NSCLC. Analysis of transcriptome data from two independent NSCLC patient cohorts identified increased expression of pyruvate dehydrogenase kinase 1 (PDHK1) as well as upregulated expression of genes involved in glucose metabolism in tumors compared to normal tissue. We established models of development of resistance to EGFR TKIs to study metabolism and determine if targeting PDHK would prevent development of resistance to EGFR TKIs in NSCLC cells. The PDHK1 inhibitor dichloroacetate (DCA) in combination with EGFR TKIs and/or ionizing radiation was shown to increase the therapeutic effect in our NSCLC cell models. This mechanism was associated with redirected metabolism towards pyruvate oxidation and reduced lactate production, both in EGFR TKI sensitive and resistant NSCLC cells. Using DCA, the intracellular pool of pyruvate available for lactic fermentation becomes limited. Consequently, pyruvate is redirected to the mitochondria, and reinforces mitochondrial activity. Addition of DCA to cell culture deacidifies the extracellular microenvironment as less lactate is produced and excreted. In our study, we find that this redirection of metabolism adds to the therapeutic effect of EGFR TKI and ionizing radiation in NSCLC.
糖酵解活性增加是癌症起始和进展的一个标志,在非小细胞肺癌(NSCLC)中经常观察到。丙酮酸脱氢酶(PDH)复合体是糖酵解和氧化磷酸化之间的一个关键调控点,已知PDH的激活会抑制糖酵解活性。作为标准治疗方案的一部分,表皮生长因子受体(EGFR)发生致癌突变的NSCLC患者接受EGFR酪氨酸激酶抑制剂(EGFR TKIs)治疗。尽管初始反应良好,但这种治疗不可避免地会产生耐药性。在本研究中,我们提出抑制糖酵解将增强治疗效果,并可能预防NSCLC对EGFR TKIs和电离辐射产生耐药性。对两个独立的NSCLC患者队列的转录组数据分析发现,与正常组织相比,肿瘤中丙酮酸脱氢酶激酶1(PDHK1)的表达增加以及参与葡萄糖代谢的基因表达上调。我们建立了对EGFR TKIs产生耐药性的模型,以研究代谢情况,并确定靶向PDHK是否能预防NSCLC细胞对EGFR TKIs产生耐药性。在我们的NSCLC细胞模型中,PDHK1抑制剂二氯乙酸(DCA)与EGFR TKIs和/或电离辐射联合使用显示出增强治疗效果。这种机制与糖代谢重定向为丙酮酸氧化以及乳酸生成减少有关,在EGFR TKI敏感和耐药的NSCLC细胞中均如此。使用DCA后,可用于乳酸发酵的细胞内丙酮酸池变得有限。因此,丙酮酸被重定向到线粒体,增强了线粒体活性。向细胞培养物中添加DCA会使细胞外微环境去酸化,因为产生和分泌的乳酸减少。在我们的研究中,我们发现这种代谢重定向增强了EGFR TKI和电离辐射对NSCLC的治疗效果。