Suppr超能文献

蛋白质的熵稳定作用及其蛋白质组学后果。

Entropic stabilization of proteins and its proteomic consequences.

作者信息

Berezovsky Igor N, Chen William W, Choi Paul J, Shakhnovich Eugene I

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2005 Sep;1(4):e47. doi: 10.1371/journal.pcbi.0010047. Epub 2005 Sep 30.

Abstract

Evolutionary traces of thermophilic adaptation are manifest, on the whole-genome level, in compositional biases toward certain types of amino acids. However, it is sometimes difficult to discern their causes without a clear understanding of underlying physical mechanisms of thermal stabilization of proteins. For example, it is well-known that hyperthermophiles feature a greater proportion of charged residues, but, surprisingly, the excess of positively charged residues is almost entirely due to lysines but not arginines in the majority of hyperthermophilic genomes. All-atom simulations show that lysines have a much greater number of accessible rotamers than arginines of similar degree of burial in folded states of proteins. This finding suggests that lysines would preferentially entropically stabilize the native state. Indeed, we show in computational experiments that arginine-to-lysine amino acid substitutions result in noticeable stabilization of proteins. We then hypothesize that if evolution uses this physical mechanism as a complement to electrostatic stabilization in its strategies of thermophilic adaptation, then hyperthermostable organisms would have much greater content of lysines in their proteomes than comparably sized and similarly charged arginines. Consistent with that, high-throughput comparative analysis of complete proteomes shows extremely strong bias toward arginine-to-lysine replacement in hyperthermophilic organisms and overall much greater content of lysines than arginines in hyperthermophiles. This finding cannot be explained by genomic GC compositional biases or by the universal trend of amino acid gain and loss in protein evolution. We discovered here a novel entropic mechanism of protein thermostability due to residual dynamics of rotamer isomerization in native state and demonstrated its immediate proteomic implications. Our study provides an example of how analysis of a fundamental physical mechanism of thermostability helps to resolve a puzzle in comparative genomics as to why amino acid compositions of hyperthermophilic proteomes are significantly biased toward lysines but not similarly charged arginines.

摘要

在全基因组水平上,嗜热适应的进化痕迹表现为对某些类型氨基酸的组成偏向。然而,如果不清楚蛋白质热稳定性的潜在物理机制,有时就很难辨别其原因。例如,众所周知,超嗜热菌中带电残基的比例更高,但令人惊讶的是,在大多数超嗜热菌基因组中,带正电荷残基的过量几乎完全是由于赖氨酸,而非精氨酸。全原子模拟表明,在蛋白质折叠状态下,赖氨酸比具有相似埋藏程度的精氨酸具有更多可及的旋转异构体。这一发现表明,赖氨酸会优先以熵的方式稳定天然状态。事实上,我们在计算实验中表明,精氨酸到赖氨酸的氨基酸替换会导致蛋白质明显稳定。然后我们推测,如果进化在其嗜热适应策略中利用这种物理机制作为静电稳定的补充,那么超嗜热生物蛋白质组中的赖氨酸含量将比大小相当且电荷相同的精氨酸高得多。与此一致的是,对完整蛋白质组的高通量比较分析表明,超嗜热生物中精氨酸到赖氨酸的替换存在极强的偏向性,且超嗜热菌中赖氨酸的总体含量远高于精氨酸。这一发现无法用基因组GC组成偏向或蛋白质进化中氨基酸增减的普遍趋势来解释。我们在此发现了一种由于天然状态下旋转异构体异构化的残余动力学而产生的蛋白质热稳定性的新熵机制,并证明了其直接的蛋白质组学意义。我们的研究提供了一个例子,说明对热稳定性基本物理机制的分析如何有助于解决比较基因组学中的一个谜题,即为什么超嗜热生物蛋白质组的氨基酸组成明显偏向赖氨酸,而不是电荷相同的精氨酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9587/1239905/23d4ada4723d/pcbi.0010047.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验