Schuetze S, Paul R, Gliniak B C, Kabat D
Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health Sciences University, Portland 97201-3098.
Mol Cell Biol. 1992 Jul;12(7):2967-75. doi: 10.1128/mcb.12.7.2967-2975.1992.
Both viral and cellular genes have been directly implicated in pathogenesis of Friend viral erythroleukemia. The virus-encoded gp55 glycoprotein binds to erythropoietin receptors to cause mitogenesis and differentiation of erythroblasts. However, if the provirus integrates adjacent to the gene for the PU.1 transcription factor, the cell loses its commitment to terminally differentiate and becomes immortal, as indicated by its transplantability and by its potential for indefinite growth in culture (C. Spiro, B. Gliniak, and D. Kabat, J. Virol. 63:4434-4437, 1989; R. Paul, S. Schuetze, S. L. Kozak, and D. Kabat, J. Virol. 65:464-467, 1991). To test the implications of these results, we produced polyclonal antiserum to bacterially synthesized PU.1, and we used it to analyze PU.1 expression throughout leukemic progression and during chemically induced differentiation of Friend erythroleukemia (F-MEL) cell lines. This antiserum identified three electrophoretically distinct PU.1 components in extracts of F-MEL cells and demonstrated their nuclear localization. Although PU.1 proteins are abundant in F-MEL cells, they are absent or present in only trace amounts in normal erythroblasts or in differentiating erythroblasts from the preleukemic stage of Friend disease. Furthermore, chemicals (dimethyl sulfoxide or N,N'-hexamethylenebisacetamide) that overcome the blocked differentiation of F-MEL cells induce rapid declines of PU.1 mRNA and PU.1 proteins. The elimination of PU.1 proteins coincides with recommitment to the program of erythroid differentiation and with loss of immortality. These results support the hypothesis that PU.1 interferes with the commitment of erythroblasts to differentiate and that chemicals that reduce PU.1 expression reinstate the erythropoietic program.
病毒基因和细胞基因都与弗瑞德病毒红细胞白血病的发病机制直接相关。病毒编码的gp55糖蛋白与促红细胞生成素受体结合,导致成红细胞的有丝分裂和分化。然而,如果前病毒整合到PU.1转录因子基因附近,细胞就会失去终末分化的能力并变得永生,这表现在它的可移植性以及在培养中无限生长的潜力上(C. 斯皮罗、B. 格林尼亚克和D. 卡巴特,《病毒学杂志》63:4434 - 4437,1989;R. 保罗、S. 舒策、S. L. 科扎克和D. 卡巴特,《病毒学杂志》65:464 - 467,1991)。为了验证这些结果的意义,我们制备了针对细菌合成的PU.1的多克隆抗血清,并用于分析在弗瑞德红细胞白血病(F - MEL)细胞系白血病进展全过程以及化学诱导分化过程中PU.1的表达情况。这种抗血清在F - MEL细胞提取物中鉴定出三种电泳性质不同的PU.1组分,并证明它们定位于细胞核。虽然PU.1蛋白在F - MEL细胞中大量存在,但在正常成红细胞或来自弗瑞德病白血病前期的分化成红细胞中不存在或仅以微量存在。此外,能够克服F - MEL细胞分化阻滞的化学物质(二甲基亚砜或N,N'-己二甲基双乙酰胺)会诱导PU.1 mRNA和PU.1蛋白迅速减少。PU.1蛋白的消除与重新启动红系分化程序以及失去永生性同时发生。这些结果支持这样的假说,即PU.1干扰成红细胞的分化,而降低PU.1表达的化学物质可恢复造血程序。