Suppr超能文献

雏鸡脑干听觉时间差分析

The analysis of interaural time differences in the chick brain stem.

作者信息

Hyson Richard L

机构信息

Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA.

出版信息

Physiol Behav. 2005 Oct 15;86(3):297-305. doi: 10.1016/j.physbeh.2005.08.003. Epub 2005 Oct 3.

Abstract

The brain stem auditory system of the chick has proven to be a useful model system for analyzing how the brain encodes temporal information. This paper reviews some of the work on a circuit in the brain stem that compares the timing of information coming from the two ears to determine the location of a sound source. The contralateral projection from the cochlear nucleus, nucleus magnocellularis (NM), to nucleus laminaris (NL) forms a delay line as it proceeds from medial to lateral across NL. NL neurons function like coincidence detectors in that they respond maximally when input from the two ears arrive simultaneously. This arrangement may allow NL to code sound space by the relative level of activity across the nucleus. The head anatomy of the chick allows for enhancement of the functional interaural time differences. Comparing the functional interaural time differences to the length of the neural delay line suggests that each NL can encode approximately one hemifield of sound space. Finally it is suggested that inhibitory input into the NM-NL circuit may provide a means to dynamically adjust the gain of the circuit to allow accurate coding of sound location despite changes in overall sound intensity.

摘要

事实证明,雏鸡的脑干听觉系统是分析大脑如何编码时间信息的有用模型系统。本文回顾了一些关于脑干中一个回路的研究工作,该回路比较来自双耳的信息的时间,以确定声源的位置。从耳蜗核的巨细胞层(NM)到层状核(NL)的对侧投射,在从内侧向外侧穿过NL的过程中形成了一条延迟线。NL神经元的功能类似于符合探测器,即当来自双耳的输入同时到达时,它们的反应最为强烈。这种排列方式可能使NL通过整个核内相对的活动水平来编码声音空间。雏鸡的头部解剖结构有利于增强功能性双耳时间差。将功能性双耳时间差与神经延迟线的长度进行比较表明,每个NL大约可以编码一个半声场的声音空间。最后有人提出,进入NM-NL回路的抑制性输入可能提供一种动态调节回路增益的方法,以便在总体声音强度发生变化时仍能准确编码声音位置。

相似文献

1
The analysis of interaural time differences in the chick brain stem.
Physiol Behav. 2005 Oct 15;86(3):297-305. doi: 10.1016/j.physbeh.2005.08.003. Epub 2005 Oct 3.
2
A circuit for coding interaural time differences in the chick brainstem.
J Neurosci. 1992 May;12(5):1698-708. doi: 10.1523/JNEUROSCI.12-05-01698.1992.
3
Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
Eur J Neurosci. 1998 Nov;10(11):3438-50. doi: 10.1046/j.1460-9568.1998.00353.x.
5
Coincidence detection by binaural neurons in the chick brain stem.
J Neurophysiol. 1993 Apr;69(4):1197-211. doi: 10.1152/jn.1993.69.4.1197.
6
Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
Front Neural Circuits. 2015 Aug 20;9:43. doi: 10.3389/fncir.2015.00043. eCollection 2015.
7
Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection.
J Neurosci. 2010 Jan 6;30(1):70-80. doi: 10.1523/JNEUROSCI.3464-09.2010.
8
Maps of ITD in the nucleus laminaris of the barn owl.
Adv Exp Med Biol. 2013;787:215-22. doi: 10.1007/978-1-4614-1590-9_24.
9
Modeling coincidence detection in nucleus laminaris.
Biol Cybern. 2003 Nov;89(5):388-96. doi: 10.1007/s00422-003-0444-4. Epub 2003 Nov 28.

引用本文的文献

3
In Ovo Electroporation in the Chicken Auditory Brainstem.
J Vis Exp. 2017 Jun 9(124):55628. doi: 10.3791/55628.
4
Glial Cell Contributions to Auditory Brainstem Development.
Front Neural Circuits. 2016 Oct 21;10:83. doi: 10.3389/fncir.2016.00083. eCollection 2016.
5
Developmental Profile of Ion Channel Specializations in the Avian Nucleus Magnocellularis.
Front Cell Neurosci. 2016 Mar 30;10:80. doi: 10.3389/fncel.2016.00080. eCollection 2016.
6
Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
Front Neural Circuits. 2015 Aug 20;9:43. doi: 10.3389/fncir.2015.00043. eCollection 2015.
7
In vivo coincidence detection in mammalian sound localization generates phase delays.
Nat Neurosci. 2015 Mar;18(3):444-52. doi: 10.1038/nn.3948. Epub 2015 Feb 9.
8
Resolution of interaural time differences in the avian sound localization circuit-a modeling study.
Front Comput Neurosci. 2014 Aug 26;8:99. doi: 10.3389/fncom.2014.00099. eCollection 2014.
9
Axon guidance in the auditory system: multiple functions of Eph receptors.
Neuroscience. 2014 Sep 26;277:152-62. doi: 10.1016/j.neuroscience.2014.06.068. Epub 2014 Jul 7.
10
Refractoriness enhances temporal coding by auditory nerve fibers.
J Neurosci. 2013 May 1;33(18):7681-90. doi: 10.1523/JNEUROSCI.3405-12.2013.

本文引用的文献

1
A place theory of sound localization.
J Comp Physiol Psychol. 1948 Feb;41(1):35-9. doi: 10.1037/h0061495.
2
Optimal neural population coding of an auditory spatial cue.
Nature. 2004 Aug 5;430(7000):682-6. doi: 10.1038/nature02768.
3
Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons.
J Neurophysiol. 2004 Jun;91(6):2465-73. doi: 10.1152/jn.00717.2003. Epub 2004 Jan 28.
4
Modeling coincidence detection in nucleus laminaris.
Biol Cybern. 2003 Nov;89(5):388-96. doi: 10.1007/s00422-003-0444-4. Epub 2003 Nov 28.
5
Evaluation of the limiting acuity of coincidence detection in nucleus laminaris of the chicken.
J Physiol. 2003 Oct 15;552(Pt 2):611-20. doi: 10.1113/jphysiol.2003.041574.
6
Development of membrane conductance improves coincidence detection in the nucleus laminaris of the chicken.
J Physiol. 2002 Apr 15;540(Pt 2):529-42. doi: 10.1113/jphysiol.2001.013365.
7
Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus.
J Physiol. 2001 Aug 15;535(Pt 1):125-31. doi: 10.1111/j.1469-7793.2001.t01-1-00125.x.
8
A neural code for low-frequency sound localization in mammals.
Nat Neurosci. 2001 Apr;4(4):396-401. doi: 10.1038/86049.
9
Minimizing synaptic depression by control of release probability.
J Neurosci. 2001 Mar 15;21(6):1857-67. doi: 10.1523/JNEUROSCI.21-06-01857.2001.
10
GABAergic inhibition in nucleus magnocellularis: implications for phase locking in the avian auditory brainstem.
J Neurosci. 2000 Apr 15;20(8):2954-63. doi: 10.1523/JNEUROSCI.20-08-02954.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验