Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195-7923, USA.
J Neurosci. 2010 Jan 6;30(1):70-80. doi: 10.1523/JNEUROSCI.3464-09.2010.
Understanding binaural perception requires detailed analyses of the neural circuitry responsible for the computation of interaural time differences (ITDs). In the avian brainstem, this circuit consists of internal axonal delay lines innervating an array of coincidence detector neurons that encode external ITDs. Nucleus magnocellularis (NM) neurons project to the dorsal dendritic field of the ipsilateral nucleus laminaris (NL) and to the ventral field of the contralateral NL. Contralateral-projecting axons form a delay line system along a band of NL neurons. Binaural acoustic signals in the form of phase-locked action potentials from NM cells arrive at NL and establish a topographic map of sound source location along the azimuth. These pathways are assumed to represent a circuit similar to the Jeffress model of sound localization, establishing a place code along an isofrequency contour of NL. Three-dimensional measurements of axon lengths reveal major discrepancies with the current model; the temporal offset based on conduction length alone makes encoding of physiological ITDs impossible. However, axon diameter and distances between Nodes of Ranvier also influence signal propagation times along an axon. Our measurements of these parameters reveal that diameter and internode distance can compensate for the temporal offset inferred from axon lengths alone. Together with other recent studies, these unexpected results should inspire new thinking on the cellular biology, evolution, and plasticity of the circuitry underlying low-frequency sound localization in both birds and mammals.
理解双耳感知需要对负责计算耳间时间差 (ITD) 的神经回路进行详细分析。在鸟类脑干中,该回路由内部轴突延迟线组成,这些延迟线支配着一系列编码外部 ITD 的重合检测器神经元。巨细胞核 (NM) 神经元投射到同侧核层 (NL) 的背侧树突场和对侧 NL 的腹侧场。对侧投射轴突在 NL 神经元的一条带上形成延迟线系统。NM 细胞以锁相动作电位的形式产生的双耳声信号到达 NL,并在方位上建立声源位置的地形图。这些途径被认为代表了类似于杰弗里斯声音定位模型的回路,在 NL 的等频轮廓上建立了位置码。轴突长度的三维测量与当前模型存在较大差异;仅基于传导长度的时间偏移使得生理 ITD 的编码成为不可能。然而,轴突直径和郎飞结之间的距离也会影响沿轴突的信号传播时间。我们对这些参数的测量表明,直径和节间距离可以弥补仅从轴突长度推断出的时间偏移。结合其他最近的研究,这些出人意料的结果应该激发对鸟类和哺乳动物低频声音定位基础电路的细胞生物学、进化和可塑性的新思考。