Suppr超能文献

不应期增强听神经纤维的时间编码。

Refractoriness enhances temporal coding by auditory nerve fibers.

机构信息

Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Neurosci. 2013 May 1;33(18):7681-90. doi: 10.1523/JNEUROSCI.3405-12.2013.

Abstract

A universal property of spiking neurons is refractoriness, a transient decrease in discharge probability immediately following an action potential (spike). The refractory period lasts only one to a few milliseconds, but has the potential to affect temporal coding of acoustic stimuli by auditory neurons, which are capable of submillisecond spike-time precision. Here this possibility was investigated systematically by recording spike times from chicken auditory nerve fibers in vivo while stimulating with repeated pure tones at characteristic frequency. Refractory periods were tightly distributed, with a mean of 1.58 ms. A statistical model was developed to recapitulate each fiber's responses and then used to predict the effect of removing the refractory period on a cell-by-cell basis for two largely independent facets of temporal coding: faithful entrainment of interspike intervals to the stimulus frequency and precise synchronization of spike times to the stimulus phase. The ratio of the refractory period to the stimulus period predicted the impact of refractoriness on entrainment and synchronization. For ratios less than ∼0.9, refractoriness enhanced entrainment and this enhancement was often accompanied by an increase in spike-time precision. At higher ratios, little or no change in entrainment or synchronization was observed. Given the tight distribution of refractory periods, the ability of refractoriness to improve temporal coding is restricted to neurons responding to low-frequency stimuli. Enhanced encoding of low frequencies likely affects sound localization and pitch perception in the auditory system, as well as perception in nonauditory sensory modalities, because all spiking neurons exhibit refractoriness.

摘要

神经元的一个普遍特性是不应期,即在动作电位(尖峰)后,放电概率会短暂下降。不应期仅持续一到几毫秒,但有可能影响听觉神经元对声音刺激的时间编码,因为听觉神经元能够实现亚毫秒级的尖峰时间精度。在这里,通过在体内记录鸡听觉神经纤维的尖峰时间,同时用特征频率的重复纯音刺激,系统地研究了这种可能性。不应期分布紧密,平均值为 1.58 毫秒。开发了一个统计模型来重现每个纤维的反应,然后用于预测消除不应期对细胞间时间编码的两个主要独立方面的影响:刺激频率的尖峰间隔的准确跟踪和刺激相位的尖峰时间的精确同步。不应期与刺激期的比值预测了不应期对跟踪和同步的影响。对于比值小于约 0.9 的情况,不应期增强了跟踪,并且这种增强通常伴随着尖峰时间精度的提高。在更高的比值下,跟踪或同步几乎没有变化。鉴于不应期的紧密分布,不应期增强时间编码的能力仅限于对低频刺激作出反应的神经元。对低频的增强编码可能会影响听觉系统中的声音定位和音高感知,以及非听觉感觉模式的感知,因为所有的尖峰神经元都表现出不应期。

相似文献

1

引用本文的文献

5
A comprehensive computational model of animal biosonar signal processing.动物生物声纳信号处理的综合计算模型。
PLoS Comput Biol. 2021 Feb 17;17(2):e1008677. doi: 10.1371/journal.pcbi.1008677. eCollection 2021 Feb.

本文引用的文献

2
Conditional probability analyses of the spike activity of single neurons.单个神经元放电活动的条件概率分析。
Biophys J. 1967 Nov;7(6):759-77. doi: 10.1016/S0006-3495(67)86621-9. Epub 2008 Dec 31.
4
The volley theory and the spherical cell puzzle.齐射理论与球状细胞谜题。
Neuroscience. 2008 Jun 12;154(1):65-76. doi: 10.1016/j.neuroscience.2008.03.002. Epub 2008 Mar 8.
7
The analysis of interaural time differences in the chick brain stem.雏鸡脑干听觉时间差分析
Physiol Behav. 2005 Oct 15;86(3):297-305. doi: 10.1016/j.physbeh.2005.08.003. Epub 2005 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验