Suppr超能文献

果蝇触角叶中的感觉处理增强了整体气味表征的可靠性和可分离性。

Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations.

作者信息

Bhandawat Vikas, Olsen Shawn R, Gouwens Nathan W, Schlief Michelle L, Wilson Rachel I

机构信息

Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.

出版信息

Nat Neurosci. 2007 Nov;10(11):1474-82. doi: 10.1038/nn1976. Epub 2007 Oct 7.

Abstract

Here we describe several fundamental principles of olfactory processing in the Drosophila melanogaster antennal lobe (the analog of the vertebrate olfactory bulb), through the systematic analysis of input and output spike trains of seven identified glomeruli. Repeated presentations of the same odor elicit more reproducible responses in second-order projection neurons (PNs) than in their presynaptic olfactory receptor neurons (ORNs). PN responses rise and accommodate rapidly, emphasizing odor onset. Furthermore, weak ORN inputs are amplified in the PN layer but strong inputs are not. This nonlinear transformation broadens PN tuning and produces more uniform distances between odor representations in PN coding space. In addition, portions of the odor response profile of a PN are not systematically related to their direct ORN inputs, which probably indicates the presence of lateral connections between glomeruli. Finally, we show that a linear discriminator classifies odors more accurately using PN spike trains than using an equivalent number of ORN spike trains.

摘要

在此,我们通过对七个已识别的嗅觉小球的输入和输出脉冲序列进行系统分析,描述了果蝇触角叶(类似于脊椎动物的嗅球)嗅觉处理的几个基本原理。与它们的突触前嗅觉受体神经元(ORN)相比,相同气味的重复呈现会在二级投射神经元(PN)中引发更可重复的反应。PN反应迅速上升并适应,突出了气味的起始。此外,弱的ORN输入在PN层中被放大,而强输入则不然。这种非线性转换拓宽了PN的调谐范围,并在PN编码空间中产生了更均匀的气味表征之间的距离。此外,PN的气味反应曲线的部分与它们直接的ORN输入没有系统的关联,这可能表明嗅觉小球之间存在侧向连接。最后,我们表明,线性判别器使用PN脉冲序列比使用等量的ORN脉冲序列能更准确地对气味进行分类。

相似文献

3
Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
J Neurosci. 2005 Oct 5;25(40):9069-79. doi: 10.1523/JNEUROSCI.2070-05.2005.
4
Olfactory processing and behavior downstream from highly selective receptor neurons.
Nat Neurosci. 2007 May;10(5):623-30. doi: 10.1038/nn1881. Epub 2007 Apr 8.
5
Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
Neuron. 2007 Apr 5;54(1):89-103. doi: 10.1016/j.neuron.2007.03.010.
6
Transformation of olfactory representations in the Drosophila antennal lobe.
Science. 2004 Jan 16;303(5656):366-70. doi: 10.1126/science.1090782. Epub 2003 Dec 18.
8
Neural encoding of rapidly fluctuating odors.
Neuron. 2009 Feb 26;61(4):570-86. doi: 10.1016/j.neuron.2009.01.021.
10
Olfactory coding from the periphery to higher brain centers in the Drosophila brain.
BMC Biol. 2017 Jun 30;15(1):56. doi: 10.1186/s12915-017-0389-z.

引用本文的文献

1
Neural connectivity of a computational map for fly flight control.
bioRxiv. 2025 May 30:2025.05.29.656834. doi: 10.1101/2025.05.29.656834.
2
Hybrid neural networks in the mushroom body drive olfactory preference in .
Sci Adv. 2025 May 30;11(22):eadq9893. doi: 10.1126/sciadv.adq9893.
3
Nonlinear high-activity neuronal excitation enhances odor discrimination.
Curr Biol. 2025 Apr 7;35(7):1521-1538.e5. doi: 10.1016/j.cub.2025.02.034. Epub 2025 Mar 18.
4
A neural correlate of individual odor preference in .
Elife. 2025 Mar 11;12:RP90511. doi: 10.7554/eLife.90511.
5
Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations.
J Neurosci. 2025 Mar 5;45(10):e1872242024. doi: 10.1523/JNEUROSCI.1872-24.2024.
6
Gene expansion in the hawkmoth drives evolution of food-associated odorant receptors.
iScience. 2024 Nov 4;27(12):111317. doi: 10.1016/j.isci.2024.111317. eCollection 2024 Dec 20.
8
Response Plasticity of Olfactory Sensory Neurons.
Int J Mol Sci. 2024 Jun 28;25(13):7125. doi: 10.3390/ijms25137125.
9
A lightweight data-driven spiking neuronal network model of olfactory nervous system with dedicated hardware support.
Front Neurosci. 2024 Jun 26;18:1384336. doi: 10.3389/fnins.2024.1384336. eCollection 2024.
10
Synergistic olfactory processing for social plasticity in desert locusts.
Nat Commun. 2024 Jun 28;15(1):5476. doi: 10.1038/s41467-024-49719-7.

本文引用的文献

1
Evolutionary dynamics of olfactory receptor genes in Drosophila species.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7122-7. doi: 10.1073/pnas.0702133104. Epub 2007 Apr 16.
2
Olfactory processing and behavior downstream from highly selective receptor neurons.
Nat Neurosci. 2007 May;10(5):623-30. doi: 10.1038/nn1881. Epub 2007 Apr 8.
3
Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
Neuron. 2007 Apr 5;54(1):89-103. doi: 10.1016/j.neuron.2007.03.010.
5
Comparative chemosensation from receptors to ecology.
Nature. 2006 Nov 16;444(7117):295-301. doi: 10.1038/nature05402.
6
Free-flight responses of Drosophila melanogaster to attractive odors.
J Exp Biol. 2006 Aug;209(Pt 15):3001-17. doi: 10.1242/jeb.02305.
7
Coding of odors by a receptor repertoire.
Cell. 2006 Apr 7;125(1):143-60. doi: 10.1016/j.cell.2006.01.050.
9
Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
J Neurosci. 2005 Oct 5;25(40):9069-79. doi: 10.1523/JNEUROSCI.2070-05.2005.
10
Genetic and functional subdivision of the Drosophila antennal lobe.
Curr Biol. 2005 Sep 6;15(17):1548-53. doi: 10.1016/j.cub.2005.07.066.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验