Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Sci Rep. 2017 Sep 25;7(1):12295. doi: 10.1038/s41598-017-12528-8.
Many biological and synthetic systems exploit self-assembly to generate highly intricate closed supramolecular architectures, ranging from self-assembling cages to viral capsids. The fundamental design principles that control the structural determinants of the resulting assemblies are increasingly well-understood, but much less is known about the kinetics of such assembly phenomena and it remains a key challenge to elucidate how these systems can be engineered to assemble in an efficient manner and avoid kinetic trapping. We show here that simple scaling laws emerge from a set of kinetic equations describing the self-assembly of identical building blocks into closed supramolecular structures and that this scaling behavior provides general rules that determine efficient assembly in these systems. Using this framework, we uncover the existence of a narrow range of parameter space that supports efficient self-assembly and reveal that nature capitalizes on this behavior to direct the reliable assembly of viral capsids on biologically relevant timescales.
许多生物和合成系统利用自组装来生成高度复杂的封闭超分子结构,范围从自组装笼到病毒衣壳。控制组装结构的基本设计原则越来越被理解,但对于这些组装现象的动力学了解甚少,阐明这些系统如何能够以有效的方式组装并避免动力学捕获仍然是一个关键挑战。我们在这里表明,一组描述相同构建块自组装成封闭超分子结构的动力学方程产生了简单的标度律,这种标度行为提供了确定这些系统中有效组装的一般规则。使用这个框架,我们揭示了在支持有效自组装的参数空间的狭窄范围内存在,并表明自然界利用这种行为来指导病毒衣壳在生物相关时间尺度上的可靠组装。