Suppr超能文献

功能磁共振成像分析中的质量控制实践:理念、方法及使用AFNI的示例

Quality control practices in FMRI analysis: Philosophy, methods and examples using AFNI.

作者信息

Reynolds Richard C, Taylor Paul A, Glen Daniel R

机构信息

Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, United States.

出版信息

Front Neurosci. 2023 Jan 30;16:1073800. doi: 10.3389/fnins.2022.1073800. eCollection 2022.

Abstract

Quality control (QC) is a necessary, but often an under-appreciated, part of FMRI processing. Here we describe procedures for performing QC on acquired or publicly available FMRI datasets using the widely used AFNI software package. This work is part of the Research Topic, "Demonstrating Quality Control (QC) Procedures in fMRI." We used a sequential, hierarchical approach that contained the following major stages: (1) GTKYD (getting to know your data, esp. its basic acquisition properties), (2) APQUANT (examining quantifiable measures, with thresholds), (3) APQUAL (viewing qualitative images, graphs, and other information in systematic HTML reports) and (4) GUI (checking features interactively with a graphical user interface); and for task data, and (5) STIM (checking stimulus event timing statistics). We describe how these are complementary and reinforce each other to help researchers stay close to their data. We processed and evaluated the provided, publicly available resting state data collections (7 groups, 139 total subjects) and task-based data collection (1 group, 30 subjects). As specified within the Topic guidelines, each subject's dataset was placed into one of three categories: Include, exclude or uncertain. The main focus of this paper, however, is the detailed description of QC procedures: How to understand the contents of an FMRI dataset, to check its contents for appropriateness, to verify processing steps, and to examine potential quality issues. Scripts for the processing and analysis are freely available.

摘要

质量控制(QC)是功能磁共振成像(fMRI)数据处理中必要但常被低估的一部分。在此,我们描述了使用广泛使用的AFNI软件包对采集的或公开可用的fMRI数据集进行质量控制的程序。这项工作是研究主题“展示功能磁共振成像中的质量控制(QC)程序”的一部分。我们采用了一种包含以下主要阶段的顺序分层方法:(1)GTKYD(了解你的数据,特别是其基本采集属性),(2)APQUANT(检查可量化指标并设置阈值),(3)APQUAL(在系统的HTML报告中查看定性图像、图表和其他信息)以及(4)GUI(通过图形用户界面进行交互式特征检查);对于任务数据,还有(5)STIM(检查刺激事件定时统计)。我们描述了这些阶段如何相互补充和强化,以帮助研究人员密切关注他们的数据。我们处理并评估了提供的公开可用的静息态数据集合(7组,共139名受试者)和基于任务的数据集合(1组,30名受试者)。按照主题指南的规定,每个受试者的数据集被分为三类之一:纳入、排除或不确定。然而,本文的主要重点是质量控制程序的详细描述:如何理解fMRI数据集的内容,检查其内容是否合适,验证处理步骤,以及检查潜在的质量问题。处理和分析的脚本可免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae99/9922690/bb4c28f87adc/fnins-16-1073800-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验