Nishino S F, Spain J C, Belcher L A, Litchfield C D
Air Force Civil Engineering Support Agency, Tyndall Air Force Base, Florida 32403-6001.
Appl Environ Microbiol. 1992 May;58(5):1719-26. doi: 10.1128/aem.58.5.1719-1726.1992.
Bacterial isolates were obtained from groundwater and soils contaminated with chlorobenzene (CB). The isolates were tested to determine whether the natural community could remove the groundwater contaminants. These isolates were identified and characterized as to their ability to grow on CB and related aromatic compounds. The complete consortium could mineralize approximately 54% of the CB within 7 days, with no accumulation of 3-chlorocatechol. Metabolic pathways were evaluated for several isolates. One phenotype was characterized by the ability to degrade CB by the modified ortho pathway. One strain also degraded p-dichlorobenzene by using the same pathway. Isolates exhibiting a second phenotype degraded p-cresol, benzene, and phenol by the classical ortho pathway and accumulated 3-chlorocatechol when grown in the presence of CB. Strains of the third phenotype grew on complex media in the presence of CB but did not transform any of the aromatic compounds tested. The results suggest that the indigenous microbial community at the contaminated site would be able to degrade CB if provided with the appropriate conditions.
细菌分离株取自受氯苯(CB)污染的地下水和土壤。对这些分离株进行测试,以确定自然群落是否能够去除地下水中的污染物。对这些分离株进行了鉴定,并对它们在CB及相关芳香族化合物上生长的能力进行了表征。完整的菌群在7天内可将约54%的CB矿化,且无3-氯邻苯二酚积累。对几种分离株的代谢途径进行了评估。一种表型的特征是能够通过改良的邻位途径降解CB。一株菌株也通过相同途径降解对二氯苯。表现出第二种表型的分离株通过经典的邻位途径降解对甲酚、苯和苯酚,并且在CB存在下生长时积累3-氯邻苯二酚。第三种表型的菌株在CB存在的复杂培养基上生长,但不转化任何测试的芳香族化合物。结果表明,如果提供适当的条件,受污染场地的本地微生物群落将能够降解CB。